Building a Universe

Auburn Mountainview Karl Steffin, 2001 8/14/2025

By end of this lesson, I can...

- AS1: describe the differences between chemical and physical changes.
- AS3: calculate the charge of an element in order write an ion.
- AS4: use the atomic number and atomic mass number of an isotope, to draw and label a model of the isotope's atomic structure.
- AS5: use the relative mass and abundance of isotopes to calculate the atomic mass of an element.
- AS7: use the periodic table to find elements based on their properties...

The Subatomic Particles

• 'All' elements contain the same three particles:

Particle	Charge (q)	Mass (amu)
Proton (p ⁺)	1	1
Electron (e ⁻)	-1	1/1900
Neutron (nº)	0	1

The Periodic Table

- Contains data on all of the elements.
 - Credited to Dmitri Mendeleev in 1869.
- As of 2010 118 elements have been synthesized.
 - New elements can be named after a mythological concept, a mineral, a place or country, a property or a scientist (normally dead: Seaborg, Oganessian).

1

PERIODIC TABLE OF ELEMENT DISCOVERIES

PERIODIC TABLE OF ELEMENT PRICES

Navigating the Periodic Table

- Rows (\leftrightarrow) are called periods (7 total).
- Columns (1) are called families or groups.
- Electrons tell us when to start a new period.
- Elements are given a one or two letter symbol.
 - Ex: Li, He, Ne, C, V, W, Ti.
- Most of the time the name and symbol are the same
 - Li is Lithium, O is Oxygen

Trivial: Names that do not follow set rules

Name	Symbol	Derivative	Meaning
Antimony	Sb	Stibium	Aribic/Egyptian: Eye Paint
Copper	Cu	Cuprum	Latin: From Cyprus
Gold	Au	Aurum	Latin: Glowing Dawn
Iron	Fe	Ferrum	Latin: Holy/Strong Metal (Sword)
Lead	Pb	Plumbum	Latin: Soft Metals
Mercury	Hg	Hydrargyros	Greek: Liquid Silver
Potassium	K	Kalium	Arabic: Plant Ashes
Silver	Ag	Argentum	Indo-European: White, Shining, Money
Sodium	Na	Natrium	Arabic/Egyptian: Soda
Tin	Sn	Stannum	Indo-European: Dripping
Tungsten	W	Wolfram	German: Wolf froth (Tin stealer)

Protons

- Elements are assigned an Atomic Number (Z) according to the number of protons in their nucleus.
 - Example: All Hydrogen atoms (H) have only 1 p⁺.
 - Example: All Carbon atoms (C) have only 6 p⁺.
- Elements are placed on the periodic table according to ascending proton number.
 - Example: Helium (He) has 2 p⁺ so it is the second element to appear on the periodic table.

The Periodic Table (~2005)

Families/Groups

• Columns share similar properties, and most are given a trivial name.

Out of Place

- Most of the columns in the middle don't have family names.
- Due to spacing some elements have been moved from their middle spot to the bottom.

General Trends

Elements have three main groups: Metal, Metalloids, and Nonmetals.

Tip of the Periodic Iceberg

- A periodic table contains a great deal of information.
- Find the key and make use of it.

Electrons: Making Ions

- On the periodic table or unless specifically told, protons equal electrons.
- Ion: when an element's $p^+ \neq e^-$.
- An ion is considered electrically charged.

Ionic Example: Is Al with 16 e⁻ an ion?

- Al always has 13 p+.
- Solve by subtracting e⁻ from p⁺.

$$-13 - 16 = -3$$

- x<0 so yes, it is an Ion and called an Anion.
- If x>0 then it would be an Ion called a Cation.
- If x=0 ($e^-=p^+$) then it would not be an Ion (Neutral).

Ions: Symbolic

- To write an Ion two pieces of information are needed
 - The element's symbol
 - The charge (both mag and + or -)
- Write the element and then the charge in the upper right-hand corner.
- For 1+ or 1-: you may drop the '1'
- Examples: Al³⁺, Li⁺, Mg²⁺, Cl⁻, O²⁻.

Be Careful

- Common errors and things to look out for.
 - You CAN NEVER remove protons!
 - Adding e- means increasing the negative charge.
 - Removing e- means increasing the positive charge.
 - Don't take away more e- then there are to start.
 - Ex: Li⁴⁺ (Lithium only has 3 protons so max is Li³⁺)
 - Oxidation States tell which ions are possible.

Write Symbolically

- Uranium of charge +3.
- Oxygen with 10 electrons.
- Iron with 29 electrons.
- The most common form of element 9.

$$U^{3+}$$
 O^{2-} Fe^{3-} F^{-} $Z = 92$ 8-10 26-29 P Table

Neutrons: Making Isotopes

- While a no has no charge to contribute, its mass is almost the same as a p⁺.
- By adding or subtracting no subtle changes must occur in an element's properties.
- When two or more elements have the same number of p⁺ but different n^o this is called an...

Isotope

Symbolic Form

- Symbolic Form was mentioned with ions.
- Symbolic Form can also be used to describe an atom on the Periodic Table.

$$p^{+} + n^{o} = w$$

$$p^{+} = Z \quad X \quad n^{o}$$

w: Atomic Weight. Unless specifically told look this up on the Periodic Table.

For Isotopes: Always rounded to a whole number

Notes: Writing the no is redundant: KISS.

This form is not mixed with the Ion Symbolic Form.

Writing Isotopes

 Isotopes can be shown two ways; symbolic and written. There are three Carbon's; They have 6 no, 7 no and 8 no respectively.

$${}_{6}^{14}C_{8}$$

Carbon-13

Carbon-14

Periodic Table

- The atomic weight is listed on most periodic tables.
- Atomic Weight: Mass of the element.
- Here is information on Boron
- Its atomic weight is 10.8?
- How is this possible?
 - Remember: $p^+=1$, $n^0=1$, $e^-=.005$
 - -Z = 5 so no has to be either 5 or 6 not 5.8?

Weighted Average

- The number appearing on the periodic table is called a Weighted Average.
- Let's look at the isotopes of Boron.

Written	Symbolic	Weight	Abundance
Boron-10	$^{10}_{5}B$	10.0	19.4%
Boron-11	$^{11}_{5}B$	11.0	80.6%

Calculating Weighted Ave.

To calculate: $(AW_1)(ab\%_1) + (AW_2)(ab\%_2) + (AW_3)(ab\%_3) = Wa$

AW: Atomic Weight of Isotope

ab%: Abundance of Isotope (as a decimal)

Ex: Boron

Wa = 10.0 (.194) + 11.0 (.806)

Wa = 1.94 + 8.866

Wa = 10.806

Wrap Up

Proton (p ⁺)	Electron (e ⁻)	Neutron (nº)
Big particle in Nucleus	Small particle orbits Nucleus	Big particle in Nucleus
Equals the atmic number	Ion: $p^+ \neq e^-$	Isotope: same p ⁺ , different n ^o
Defines the element (DNA)	Cation: more p+ than e-	Unstable: $\alpha/\beta/\gamma$
Can not be added or removed	Anion: less p+ than e-	Half Life: Probability of decay

Ions

Symbol:

X p⁺ - e⁻

Example: Phosphorus with 17 electrons.

 \mathbf{P}^{-2}

Isotopes

Symbol: ^wZX

Example: Phosphorus with 16 neutrons.

 $^{31}_{15}P$

Written: Element-w

Phosphorus-31