11-1 Practice Problems

\author{

1. Lead will react with Hydrochloric Acid to produce Lead (II) Chloride and Hydrogen gas. How many moles of Hydrochloric Acid are needed to completely react with $0.36-\mathrm{mol}$ of Lead?
}
2. How many moles of HNO_{3} will be produced when $0.51-\mathrm{mol}$ of $\mathrm{N}_{2} \mathrm{O}_{5}$ reacts according to the following equation?

$$
\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}
$$

3. Iron will react with Oxygen Gas to produce $\mathrm{Fe}_{2} \mathrm{O}_{3}$. How many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ will be produced if $0.18-\mathrm{mol}$ of Fe reacts?
4. How many moles of NaBr will be produced when $0.69-\mathrm{mol}$ of Bromine reacts according to the following equation?

$$
\mathrm{Br}_{2}+2 \mathrm{NaI} \rightarrow 2 \mathrm{NaBr}+\mathrm{I}_{2}
$$

5. Phosphorus will react with Bromine to produce Phosphorus Tribromide. How many moles of Phosphorus Tribromide will be produced if $0.78-\mathrm{mol}$ of Bromine is reacted?
6. Carbon will react with Zinc Oxide to produce Zinc and Carbon Dioxide. How many moles of Carbon Dioxide will be produced if $0.38-\mathrm{mol}$ of ZnO is completely reacted?
7. How many moles of Oxygen will be needed to react with $0.38-\mathrm{mol}$ of $\mathrm{C}_{3} \mathrm{H}_{8}$ according to the following equation?
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
8. Nitrogen gas can react with Hydrogen gas to produce Ammonia. How many moles of Nitrogen will be needed to produce 0.48 - mol of NH_{3} ?
9. How many moles of Hydrogen will be produced if $0.44-\mathrm{mol}$ of CaH_{2} reacts according to the following equation? $\mathrm{CaH}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{2}$
10. How many moles of water will be produced if $2.35-\mathrm{mol}$ of Oxygen reacts according to the following equation?

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

\qquad Date:

11-2 Practice Problems

1. Determine the mass of Lithium

Hydroxide produced when 0.38 g of Lithium Nitride reacts with water according to the following equation:

$$
\mathrm{Li}_{3} \mathrm{~N}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+3 \mathrm{LiOH}
$$

2. What mass of Sodium Chloride is produced when Chlorine gas reacts with 0.29 g of Sodium Iodide (Iodine is also produced in this reaction?
3. Determine the mass of Carbon Dioxide produced when 0.85 g of Butane reacts with Oxygen according to the following equation:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

4. Determine the mass of Antimony produced when 0.46 g of Antimony (III) Oxide reacts with carbon according to the following equation:

$$
\mathrm{Sb}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Sb}+3 \mathrm{CO}
$$

5. What mass of Hydrogen Peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ must decompose to produce 0.77 g of water?
6. What mass of Carbon Monoxide must react with Oxygen gas to produce 0.69 g of Carbon Dioxide?
7. Determine the mass of Sodium Nitrate produced when 0.73 g of Nickel (II) Nitrate reacts with Sodium Hydroxide according to the following equation:
$\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}+2 \mathrm{NaNO}_{3}$
8. Determine the mass of Calcium Hydroxide produced when Calcium Carbide reacts with 0.64 g of water according to the following equation:

$$
\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2}
$$

9. How many liters of Oxygen gas are necessary for the combustion of 425 g of Sulfur, assuming that the reaction occurs at STP? The balanced equation is:

$$
\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}
$$

10. Find the mass of sugar $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ required to produce 1.82 L of Carbon Dioxide gas at STP from the reaction described by the following equation:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+2 \mathrm{CO}_{2}$
11. How many grams of Ozone must decompose to produce 0.87 g of Oxygen gas?
12. Find the mass of Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ required to produce 2.66 L of Carbon Dioxide gas at STP from the reaction described by the following equation:

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+12 \mathrm{CO}_{2}
$$

11-2 Practice Problems (Continued)

13. Find the mass of Sodium required to produce 5.68 L of Hydrogen gas at STP from the reaction described by:

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}
$$

14. How many liters of Oxygen gas are necessary for the combustion of 277 g of Carbon Monoxide, assuming that the reaction occurs at STP?

$$
2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}
$$

15. How many liters of Oxygen gas are necessary for the combustion of 134 g of Magnesium, assuming that the reaction occurs at STP?

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}
$$

16. Find the mass of Aluminum required to produce 4.72 L of Hydrogen gas at STP.

$$
2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}
$$

17. TNT (Trinitrotoluene) decomposes explosively What volumes of Hydrogen gas and Nitrogen gas are produced if 5.8 L of CO is produced?

$$
2 \mathrm{C}_{7} \mathrm{H}_{5}\left(\mathrm{NO}_{2}\right)_{3} \rightarrow 2 \mathrm{C}+12 \mathrm{CO}+5 \mathrm{H}_{2}+3 \mathrm{~N}_{2}
$$

18. Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ burns in Oxygen gas to produce Carbon Dioxide and water vapor. What volume of Carbon Dioxide is produced when 2.8 L of Oxygen are consumed?

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}
$$

19. Find the mass of S_{8} required to produce 2.47 L of Sulfur Dioxide gas at STP.

$$
\mathrm{S}_{8}+8 \mathrm{O}_{2} \rightarrow 8 \mathrm{SO}_{2}
$$

20. What volumes of $\mathrm{H}_{2} \mathrm{~S}$ gas and Oxygen gas are necessary to produce 14.2 L of Sulfur Dioxide gas?

$$
2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

21. What volumes of Sulfur Dioxide and Dihydrogen Sulfide gases are necessary to produce 11.4 L of water vapor?

$$
\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}
$$

22. Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ burns in Oxygen to produce Carbon Dioxide and water vapor. What Volume of CO_{2} is produced when 3.7 L of oxygen are consumed?

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2} .
$$

23. How many liters of Hydrogen gas are produced if 225 g of Iron reacts with Hydrochloric acid (assuming STP)?

$$
\mathrm{Fe}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2}
$$

24. Nitroglycerin decomposes explosively. What volumes of Nitrogen gas and Oxygen gas are produced if 4.3 L of Carbon Dioxide is produced?

$$
4 \mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow 12 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+6 \mathrm{~N}_{2}
$$

25. Acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ burns in Oxygen to produce Carbon Dioxide and water. What volume of Carbon Dioxide is produced when 1.6 L of Oxygen are consumed?

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CO}_{2}
$$

11-3 Practice Problems

1. Identify the limiting reactant when 1.22g of O_{2} reacts with $1.05-\mathrm{g}$ of H_{2} to produce water.
2. Identify the limiting reactant when 4.68g of Fe reacts with $2.88-\mathrm{g}$ of S_{8} to produce FeS.
3. Identify the limiting reactant when 5.87g of $\mathrm{Mg}(\mathrm{OH})_{2}$ reacts with $12.84-\mathrm{g}$ of HC 1 to form MgCl_{2} and water.
4. Identify the limiting reactant when 6.25g of AgNO_{3} reacts with $4.12-\mathrm{g}$ of NaCl to form NaNO_{3} and AgCl .
5. Identify the limiting reactant when 7.81g of HC 1 reacts with $5.24-\mathrm{g}$ of NaOH to produce NaCl and $\mathrm{H}_{2} \mathrm{O}$.
6. Identify the limiting reactant when 6.33g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacts with $5.92-\mathrm{g}$ of NaOH to produce $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and water.
7. Identify the limiting reactant when $43.25-\mathrm{g}$ of CaC_{2} reacts with $33.71-\mathrm{g}$ of water to produce $\mathrm{Ca}(\mathrm{OH})_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$.
8. Identify the limiting reactant when $65.14-\mathrm{g}$ of CaCl_{2} reacts with 74.68 -g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to produce CaCO_{3} and NaCl .
9. Identify the limiting reactant when $4.687-\mathrm{g}$ of SF_{4} reacts with $6.281-\mathrm{g}$ of $\mathrm{I}_{2} \mathrm{O}_{5}$ to produce IF_{5} and SO_{2}.
10. If $4.1-\mathrm{g}$ of Cr is heated with $9.3-\mathrm{g}$ of $\mathrm{C1}_{2}$, what mass CrCl_{3} will be produced?
11. What mass of SO_{2} is produced from the reaction between $31.5-\mathrm{g}$ of S_{8} and $8.65-\mathrm{g}$ of O_{2} ?
12. What mass of SO_{3} is produced from the reaction of $12.4-\mathrm{g}$ of SO_{2} and $3.45-\mathrm{g}$ of O_{2} ?
13. What mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is produced from the reaction of $6.58-\mathrm{g}^{2} \mathrm{SO}_{3}$ and $1.64-\mathrm{g}$ of $\mathrm{H}_{2} \mathrm{O}$?
14. What mass of CdS is produced if 8.47g of Cadmium reacts with $2.51-\mathrm{g}$ of Sulfur?

11-3 Practice Problems (continued)

19. Determine the percent yield for the reaction between $3.74-\mathrm{g}$ of Na with excess O_{2} if $5.34-\mathrm{g}$ of $\mathrm{Na}_{2} \mathrm{O}_{2}$ is recovered.
20. Determine the percent yield for the reaction between $6.92-\mathrm{g}$ of K and $4.28-\mathrm{g}$ of O_{2} if $7.36-\mathrm{g}$ of $\mathrm{K}_{2} \mathrm{O}_{2}$ is produced.
21. Determine the percent yield for the reaction between $82.4-\mathrm{g}$ of Rb and $11.6-\mathrm{g}$ of O_{2} if $39.7-\mathrm{g}$ of $\mathrm{Rb}_{2} \mathrm{O}$ is produced.
22. Determine the percent yield for the reaction between 46.1 -g of Cs and $13.4-\mathrm{g}$ of O_{2} if $28.3-\mathrm{g}$ of $\mathrm{Cs}_{2} \mathrm{O}$ is produced.
23. Determine the percent yield for the reaction between 28.1-g of $\mathrm{Sb}_{4} \mathrm{O}_{6}$ and excess C if $17.3-\mathrm{g}$ of Sb is recovered along with an unknown amount of CO.
24. Determine the percent yield for the reaction between $45.9-\mathrm{g}$ of NaBr and excess Chlorine-gas to produce 12.8 -g of NaCl and an unknown amount of Brominegas.
25. Determine the percent yield for the reaction between $15.8-\mathrm{g}$ of NH_{3} and excess Oxygen-gas to produce $21.8-\mathrm{g}$ of NO-gas and water.
26. Determine the percent yield for the reaction between $98.7-\mathrm{g}$ of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ and excess Oxygen-gas if $72.4-\mathrm{g}$ of $\mathrm{Sb}_{4} \mathrm{O}_{6}$ is recovered with an unknown amount of Bromine-gas.
27. Determine the percent yield for the reaction between $46.5-\mathrm{g}$ of ZnS and 13.3 g of Oxygen-gas if $18.4-\mathrm{g}$ of ZnO is recovered with an unknown amount of Sulfur Dioxide.
