12-2 Practice Problems

Show work.

- 1. How much heat will be released when 6.44-g of Sulfur reacts with excess O_2 according to the following equation? $2S + 3O_2 \rightarrow 2SO$ $\Delta H^\circ = -791.4-kJ$
- 6. How much heat will be released when 13.7-g of Nitrogen reacts with excess O_2 according to the following equation? $N_2 + O_2 \rightarrow 2NO$ $\Delta H^\circ = 180\text{-kJ}$
- 2. How much heat will be released when 4.72-g of Carbon reacts with excess O_2 according to the following equation? $C + O_2 \rightarrow CO_2$ ΔH° =-393.5-kJ
- 7. How much heat will be released when 11.8-g of Iron reacts with excess O_2 according to the following equation? $3Fe + 2O_2 \rightarrow Fe_3O_4 \qquad \Delta H^\circ=-1120.48\text{-kJ}$
- 3. How much heat will be absorbed when 38.2-g of Bromine reacts with excess H_2 according to the following equation? $H_2 + Br_2 \rightarrow 2HBr$ $\Delta H^\circ = 72.80\text{-kJ}$
- 8. How much heat will be released when 18.6-g of Hydrogen reacts with excess O_2 according to the following equation? $2H_2 + O_2 \rightarrow 2H_2O$ ΔH° =-571.6-kJ
- 4. How much heat will be transferred when 14.9-g of ammonia reacts with excess O_2 according to the following equation? $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ $\Delta H^{\circ}=-1170\text{-kJ}$
- 9. How much heat will be released when 4.77-g of ethanol reacts with excess O_2 according to the following equation? $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$ $\Delta H^\circ=-1366.7\text{-kJ}$
- 5. How much heat will be released when 1.48-g of Chlorine Gas reacts with excess P according to the following equation? Is this reaction endothermic or exothermic? $2P + 5C1_2 \rightarrow 2PCl_5$ $\Delta H^\circ = -886-kJ$
- 10. How much heat will be transferred when 5.81-g of graphite reacts with excess H_2 according to the following equation? Is this reaction endothermic or exothermic? $6C + 3H_2 \rightarrow C_6H_6$ $\Delta H^\circ = 49.03 \text{ kJ}$

Chemistry Name:__ Date:

12-3 Practice Problems

Use Hess's law to determine the following enthalpy changes. Show work.

1. From the following enthalpy changes,

$$C + \frac{1}{2}O_2 \rightarrow CO$$

 $\Delta H^{\circ} = -110.5 - kJ$ $\Delta H^{\circ} = -283.0 - kJ$

 $CO + \frac{1}{2}O_2 \rightarrow CO_2$ calculate the value of ΔH° for the reaction $C + O_2 \rightarrow CO_2$.

6. From the following enthalpy changes,

$$Xe + F_2 \rightarrow XeF_2$$

 $\Delta H^{\circ} = -123 \text{-kJ}$

$$Xe + 2F_2 \rightarrow XeF_4$$

 $\Delta H^{\circ} = -262 \text{-kJ}$

calculate the value of ΔH° for the reaction

 $XeF_2 + F_2 \rightarrow XeF_4$.

2. From the following enthalpy changes,

$$2P + 3Cl_2 \rightarrow 2PCl_3$$

 $\Delta H^{\circ} = -640 \text{-kJ}$

 $2P + 5C1_2 \rightarrow 2PCl_5$ $\Delta H^{\circ} = -886 \text{-kJ}$ calculate the value of ΔH° for the reaction

 $PC1_3 + Cl_2 \rightarrow PCl_5$.

7. From the following enthalpy changes,

 $2A1 + 3/2O_2 \rightarrow Al_2O_3$ $2\text{Fe} + 3/2\text{O}_2 \rightarrow \text{Fe}_2\text{O}_3$

 $\Delta H^{\circ} = -1601 - kJ$ $\Delta H^{\circ} = -821 \text{-kJ}$

calculate the value of ΔH° for the reaction

 $2A1 + Fe_2O_3 \rightarrow 2Fe + Al_2O_3$.

3. From the following enthalpy changes,

 $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$

 $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ $\Delta H^{\circ} = -1.234.7 \text{-kJ}$

 $\Delta H^{\circ} = -1170 \text{-kJ}$

 $CH_3OCH_3 + 3O_2 \rightarrow 2CO_2 + 3H_2O$

 $\Delta H^{\circ} = -1328.3 - kJ$

calculate the value of ΔH° for the reaction $C_2H_5OH \rightarrow CH_3OCH_3$.

 $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$

 $\Delta H^{\circ} = -1530 \text{-kJ}$

calculate the value of ΔH° for the reaction $N_2 + O_2 \rightarrow 2NO$.

8. From the following enthalpy changes,

4. From the following enthalpy changes,

 $Cu + Cl_2 \rightarrow CuCl_2$

 $\Delta H^{\circ} = -206 \text{-kJ}$ $\Delta H^{\circ} = -136 \text{-kJ}$

 $2Cu + Cl_2 \rightarrow 2CuCl$ calculate the value of ΔH° for the reaction $CuCl_2 + Cu \rightarrow 2CuCl.$

9. From the following enthalpy changes,

 $H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$ $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$

 $\Delta H^{\circ} = -94.6 \text{-kJ}$ $\Delta H^{\circ} = -286.0 \text{-kJ}$

calculate the value of ΔH° for the reaction

 $H_2 + H_2O_2 \rightarrow 2H_2O$.

5. From the following enthalpy changes,

 $H_2 + F_2 \rightarrow 2HF$

 $\Delta H^{\circ} = -542.2 \text{-kJ}$ $\Delta H^{\circ} = -571.6 \text{-kJ}$

 $2H_2 + O_2 \rightarrow 2H_2O$ calculate the value of ΔH° for the reaction

 $2F_2 + 2H_2O \rightarrow 4HF + O_2$.

10. From the following enthalpy changes,

 $C + O_2 \rightarrow CO_2$

 $\Delta H^{\circ} = -393.5 - kJ$

 $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$

 $\Delta H^{\circ} = -285.8 \text{-kJ}$

 $2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$

 $\Delta H^{\circ} = -2598.8 - kJ$

calculate the value of ΔH° for the reaction $2C + H_2 \rightarrow C_2H_2$

Name: Date:	Chemistry
-------------	-----------

12-4 Practice Problems

Show work.

1. When a 12.8-g sample of KCl dissolves in 75.0-g of water in a calorimeter, the temperature drops from 31.0°C to 21.6°C. Calculate ΔH for the process.

 $KCl \rightarrow K^+ + Cl^-$

6. When a 19.2-g sample of KCN dissolves in 65.0-g of water in a calorimeter, the temperature drops from 28.1°C to 15.4°C. Calculate ΔH for the process. KCN \rightarrow K⁺ + CN⁻

2. What is the specific heat of aluminum if the temperature of a 28.4 g sample of aluminum is increased by 8.1°C when 207 J of heat is added?

7. What is the specific heat of gold if the temperature of a 8.21-g sample of gold is increased by 6.2°C when 6.51-J of heat is added?

3. When a 25.7-g sample of NaI dissolves in 80.0-g of water in a calorimeter, the temperature rises from 20.5°C to 24.4°C. Calculate ΔH for the process.

 $NaI \rightarrow Na^+ + I^-$

8. When a 28.7-g sample of KI dissolves in 60.0 g of water in a calorimeter, the temperature drops from 27.2°C to 13.2°C. Calculate ΔH for the process. KI \rightarrow K⁺ + I⁻

4. What is the specific heat of silicon if the temperature of a 4.11-g sample of silicon is increased by 3.8°C when 11.1-J of heat is added?

9. What is the specific heat of silver if the temperature of a 15.4-g sample of silver is increased by 11.2°C when 40.5-J of heat is added?

5. When a 16.9-g sample of NaOH dissolves in 70.0-g of water in a calorimeter, the temperature rises from 22.4°C to 86.6°C. Calculate ΔH for the process. NaOH \rightarrow Na⁺ + OH⁻

10. What is the specific heat of Titanium if the temperature of a 36.7 g sample of titanium is increased by 4.8°C when 91.6 J of heat is added?

Chapter 12 24 Prentice-Hall, Inc.