Auburn Mountainview Karl Steffin, 2006 8/14/2025

Chemical Equations

By end of this lesson, I can...

M\$1: write a balanced chemical equation.

MS2: write a balanced net ionic equation.

MS3: identify the reaction type of a chemical equation.

MS4: predict whether a replacement reaction will take place.

MS5: identify and predict reaction states: Solid, Liquid, Gas, Aqueous.

AB1: I can identify and describe the differences of acids and bases.

AB2: I can identify the reactions of acids and bases by the various acid/base definitions.

AB3: I can calculate a compounds acidity/basicity using the pH scale.

What equations show

- Chemical Reaction: Process in which one or more substances are converted into new substance(s) with different physical and chemical properties.
 - Reactant(s): the chemical(s) being introduced in the reaction.
 - Product(s): the chemical(s) being produced by the reaction.

What equations show

- As in the last unit Chemical Compounds can not be altered.
 - Ex: H₂SO₄: H₄SO₄, H₂2(SO₄), 2H₂SO₄ V
- Chemical reactions must be balanced. (conservation of matter)
 - All individual elements on the reactant side must be present on the product side in the same quantities.
 - **Ex:** $2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$

Review: Balancing

$$2KCI \rightarrow 2K + CI_{2}$$

$$2 \cancel{1} \quad K \quad \cancel{1} \quad 2$$

$$2 \cancel{1} \quad CI \quad 2$$

$$2Ba(NO_{3})_{2} + K_{4}PO_{4} \rightarrow 4KNO_{3} + Ba_{2}PO_{4}$$

$$2 \cancel{1} \quad Ba \quad 2$$

$$4 \cancel{2} \quad NO_{3} \cancel{1} \quad 4$$

$$4 \quad K \quad \cancel{1} \quad 4$$

$$1 \quad PO_{4} \quad 1$$

Signs and terms

```
Yields: ----
Heat is added: \xrightarrow{\Delta}
Reaction is reversible: ← → or
States of Matter:
X_{(g)}: Gas X_{(l)}: Liquid X_{(s)}: Solid
   X<sub>(aa)</sub>: Aqueous (dissolved in water)
Diatomic Element: Molecule comprised of only
  one type of element: Back of Ion Chart
   (H_2, O_2, N_2, F_2, Cl_2, I_2, Br_2, At_2, P_4, S_8)
```

Signs and terms

•: Is used to show the presence of two chemicals without caring about the bonds.

Hydrates: While forming a solid some salts incorporate water in them. Boiling the water off (anhydrous) does not change the chemical properties.

Catalyst: Things that increase the rate of a reaction without being consumed by it.

Types of Reactions (I)

Synthesis (Direct Combination)

$$A + B \rightarrow C$$

Two or more reactants that combine to form a more complex product.

Ex:
$$Pb_{(s)} + O_{2(g)} \rightarrow PbO_{2(s)}$$

Lead reacts with Diatomic Oxygen to form Lead (IV) Oxide. (Basic oxidation reaction.)

Types of Reactions (II)

Decomposition:

$$A \rightarrow B + C$$

A reactant that breaks down to form two or more products.

Ex:
$$KCIO_{3(s)} \xrightarrow{\Delta} KCIO_{(s)} + O_{2(g)}$$

When heated Potassium Chlorate decomposes into Potassium Hypochlorite and Oxygen Gas. (Thermolytic)

Types of Reactions (III)

■ (Single) Replacement:

$$A + BX \rightarrow AX + B$$

■ The more active element/compound takes the place of another element/compound.

Iron and Copper (II) Sulfate will form Iron (II) Sulfate and Copper Dendrites. (Basic replacement reaction.)

Metal Reactivity: SR

- A metal will replace a metal in an ionic compound if it is more reactive.
 - A list of metals can be found on the ion chart.
 - Back, Top Left.
- Ex: Na + HgNO₃ \rightarrow Will it React?
 - Na is higher on the series so yes it will.
 - Answer: Na + HgNO₃ \rightarrow Hg + NaNO₃
- Ex: Ni + CaO → Will it React?
 - Ni is lower on the series so no reaction.
 - Answer: Won't React (or ><</p>

Halogen Reactivity Series

Ex:
$$2\text{NaI} + \text{Cl}_2 \longrightarrow 2\text{NaCI} + \text{I}_2$$

 $\text{NaF} + \text{Br}_2 \longrightarrow \text{will not react}$

Reduction Oxidation

- Redox: Looking at a typical SR reaction an ionic metal became pure or an ionic metal became pure.
 - Reduction: any atom, molecule, ion that gains e⁻.
 - Oxidation: any atom, molecule, ion that loses e⁻.

$$2K_{(s)} + Na_2SO_{4(aq)} \rightarrow 2Na_{(s)} + K_2SO_{4(aq)}$$

Broken down:

$$2K \rightarrow 2K^+ + 2e^-$$
 (Potassium was oxidized)
 $2Na^+ + 2e^- \rightarrow 2Na$ (Sodium was reduced)
 $2K + 2Na^+ \rightarrow 2Na + 2K^+$

- To Remember : Leo to Lion says Ger.
 - Loses Electron: Oxidation, Gains Electron: Reduction
 - Oil Rig is another mnemonic.

Types of Reactions (IV)

(Ionic) Double-Replacement:

$$AX + BY \rightarrow AY + BX$$

When two compounds interact in an aqueous solution to form a precipitate, gas, or water/non-ionized substance.

Ex: $NaCl_{(aq)} + AgNO_{3(aq)} \rightarrow NaNO_{3(aq)} + AgCl_{(s)}$. (Precipitate is formed)

Ex: $2HCl_{(aq)} + FeS_{(aq)} \rightarrow FeCl_{2(aq)} + H_2S_{(g)}$

(Gas is formed)

Ex: $HCl_{(aq)} + NaOH_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(l)}$

(Liquid is formed)

Solubility Rules

- Ionic Bonds not in the presence of water are solid.
- Ionic Solutions are mixed to see if a reaction happens
- Many Double Replacement reactions form a precipitate.
- Rules may be found on the back of the Ion Chart.
 - This is only for lonic bonds in a DR or SR reaction.
 - All rules must be processed in order.
 - Soluble = (aq), Insoluble = (s)
- If both products are (aq) then the reaction does not happen.

Net Equations/Spectator Ions

- Spectator ions are ions that don't participate in the reaction (they stay aqueous).
 - Look at this reaction:

$$NaCl_{(aq)} + AgNO_{3(aq)} \rightarrow NaNO_{3(aq)} + AgCl_{(s)}$$

- Notice the Na⁺ and NO₃⁻ parts are always aqueous.
- ■They just go along for the ride... (Spectators).
- You can rewrite the equation in Net Ionic Form.

$$Cl^{-}_{(aq)} + Ag^{+}_{(aq)} \rightarrow AgCl_{(s)}$$

Spectator Ions/Net Equations

- What is the Net Equation for the following? $Mg(ClO_3)_2 + K_2O \rightarrow KClO_3 + MgO$
- First Balance and then add Phase States $Mg(ClO_3)_{2(aq)} + K_2O_{(aq)} \rightarrow 2KClO_{3(aq)} + MgO_{(s)}$
- Highlight the non (aq) and its reactant parts. $\frac{\text{Mg}(\text{ClO}_3)_{2(aq)} + \text{K}_2\text{O}_{(aq)}}{\text{O}_{(aq)}} \rightarrow 2\text{KClO}_{3(aq)} + \frac{\text{MgO}_{(s)}}{\text{MgO}_{(s)}}$
- Rewrite: If the ion is separated add the correct charge back.

$$Mg^{2+}_{(aq)} + O^{2-}_{(aq)} \rightarrow MgO_{(s)}$$

Spectator Ions/Net Equations

► What is the Net Equation for the following? $Snl_4 + Pb(NO_3)_2 \rightarrow Sn(NO_3)_4 + Pbl_2$

$$Snl_{4(aq)} + 2Pb(NO_3)_{2(aq)} \rightarrow Sn(NO_3)_{4(aq)} + 2Pbl_{2(s)}$$

$$Sn_{4(aq)}^{1} + 2Pb(NO_3)_{2(aq)} \rightarrow Sn(NO_3)_{4(aq)} + 2Pbl_{2(s)}^{2}$$

$$4I^{1+}_{(aq)} + 2Pb^{2-}_{(aq)} \rightarrow 2PbI_{2(s)}$$

Two Special Cases

- Combustion
 - ► Hydrocarbons $(C_xH_{y \text{ or }(2x+2)})$ reaction to O_2 (burning) will produce CO_2 and water vapor.

$$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)}$$

- Neutralization (A special DR)
 - Acids and Bases form a salt and water.

$$HF_{(aq)} + KOH_{(aq)} \rightarrow KF_{(aq)} + H_2O_{(l)}$$

General Thought: Anytime H₂O is produced pay special attention.

Two Special Cases

- Combustion
 - ► Hydrocarbons $(C_xH_{y \text{ or }(2x+2)})$ reaction to O_2 (burning) will produce CO_2 and water vapor.

$$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)}$$

- Neutralization (A special DR)
 - Acids and Bases form a salt and water.

$$HF_{(aq)} + KOH_{(aq)} \rightarrow KF_{(aq)} + H_2O_{(l)}$$

General Thought: Anytime H₂O is produced pay special attention.

Defining Acids/Bases: Arrhenius

- In 1884 Swedish chemist Svante Arrhenius came up with a definition for acids/bases.
 - An acid is a substance that dissociates in water to produce Hydrogen ions (increases H⁺).
 - Bases are substances that dissociates in water to produce ions (increases OH⁻).
 - Mixing together results in neutralization.

- Problems with the Arrhenius Definition
 - This only explains water reactions.
 - Certain bases do have an OH⁻ anion.
 - This is a simplification (does not explain NH₃).

Defining Acids/Bases: Brønsted-Lowry

- Brønsted-Lowry (1923) explains reactions that occur in non-water solutions and in other phases.
 - An acid is any substance that can donate H⁺ ions.
 - A base is any substance that can accept H⁺ ions.
- This expands the last definition in two ways
 - Defines acids and bases independently from water.
 - It focuses only on the H⁺ ions (not the OH⁻ ions).

Defining: Strong and Weak

- Strong acid/bases are compounds that completely break up in water. For example, mixing a 1-mol/L of:
 - ► HCl will cause nearly all of the H⁺ ions to disassociate.

$$HCI_{(g)} + H_2O_{(I)} \rightarrow H_3O^+_{(aq)} + CI^-_{(aq)}$$

■ HF would only disassociate about 8.1%.

$$CF_{(I)} + H_2O_{(I)} \rightleftharpoons H_3O^+_{(aq)} + F^-_{(aq)}$$

- $-H_3O^+_{(aq)}$ is called a Hydronium ion.
- While HF is a weak acid it very reactive. (can not be stored in glass)

Common Strong Acids		Common Strong Bases	
Chloric Acid	HClO ₃	Lithium Hydroxide	LiOH
Hydrobromic Acid	HBr	Sodium Hydroxide	NaOH
Hydrochloric Acid	HCl	Potassium Hydroxide	КОН
Hydroiodic Acid	HI	Cesium Hydroxide	CsOH
Nitric Acid	HNO ₃	Calcium Hydroxide	Ca(OH) ₂
Perchloric Acid	HClO₄	Strontium Hydroxide	Sr(OH) ₂
Sulfuric Acid	H ₂ SO ₄	Barium Hydroxide	Ba(OH) ₂