

Stoichiometry

Chemistry
Karl Steffin
© 2007
8/14/2025

By end of this unit I can...

MS10: identify the molar ratios of a balanced chemical equation.

MS11: calculate molar relationships of a chemical equation.

MS12: determine the limiting reactant in a chemical equation.

MS13: calculate the percent yield of a chemical equation.

Stoichiometry

- Unit changes: Three Molar ratios.
- Relationships between product and reactant set up new truths.
- Being able to determine the amounts and study the quantitative relationships of equations is called stoichiometry.
- The most important idea in this chapter is to look at the coefficients of the formula.

$$N_2H_4 + 2H_2O_2 \rightarrow N_2 + 4H_2O$$

Using Coefficients

$$N_2H_4 + 2H_2O_2 \rightarrow N_2 + 4H_2O$$

- This reaction needs the following:
 - 1 mole of N₂H₄ and 2 moles of H₂O₂
 - To produce…
 - 1 mole of N₂ and 4 moles of H₂O
- How many moles of H₂O are produced if you have 3.55 moles of N₂H₄? (assume you have enough Hydrogen Peroxide)

Same as it ever was

$$(N_2H_4) + 2H_2O_2 \rightarrow N_2 + 4H_2O$$

- Use the same ideas from before:
 - Circle what you have and what you want...
 - Write what you know...
 - What you have on bottom (including the coefficient).
 - What you want on top (including the coefficient).

$$3.55 \text{ moles N}_2H_4 \times \frac{4 \text{ moles H}_2O}{1 \text{ mole N}_2H_4}$$

14.2 moles H₂O

Upping the Ante

- The last problem was a mole to mole problem.
- If given grams, Liters (of gas) or units, it is still possible to solve with one new thought
 - After Writing what you know...
 - Ask 'Is it in moles?'... if no, you must convert to moles (Chapter 10).

Big Idea

Here is a flow chart that may help.

Thermite Reaction

- In a Thermite reaction Aluminum powder reacts with Iron (III) Oxide to form Aluminum Oxide and Molten Iron... If in a complete reaction 2.3-g of Aluminum are needed, how many grams of Aluminum Oxide are produced?
- Write what you know (and circle).

$$2AI + Fe2O3 \rightarrow AI2O3 + 2Fe$$
2.3-g ?-g

Thermite Reaction

Convert Grams to Moles...

$$2.3-gATx \frac{1 \text{ mole Al}}{27.0-gAT} = .0851 \text{ moles Al}$$

• Use Molar Ratio...

.0851 moles Al
$$x = 1$$
 mole Al₂O₃ = .04 moles Al₂O₃

Convert Back to Grams...

.04 meles Al₂O₃ x
$$\frac{102.0-g \text{ Al}_2\text{O}_3}{1 \text{ mole Al}_2\text{O}_3} = 4.4-g \text{ Al}_2\text{O}_3$$

Limiting Reactants

- There are two ways to mix chemicals together.
 - Measure exactly how much of each chemical is needed to produce a reaction.
 - Put random amounts of each chemical together and see how much is produced.
- In the second case one of the chemicals will be a limiting reactant.
- Think about this... A Table requires four legs and one top. If you had 22 legs and 6 tops how many tables could you make? What part is limiting the production?

$$4Lg + 1Tt \rightarrow 1Tb$$

Visual Approach

The legs limit the construction of more tables.

Solving Limiting Reactants

- Write what you know
 - If not given the balanced formula
 - Circle both given amounts
- Find out how much product each reactant will produce.
 (double the work)
 - If not told specifically solve for any one product.
- The one that produces the least amount is the limiting reactant.

Limiting Reactant Example

 What is the limiting reactant when 1.7-g of Sodium and 2.6-L of Chlorine gas at STP produce Table Salt?

$$2.6-L Cl_2 \rightarrow 13.6-g NaCl$$

Percent Yield

- Despite best plans in any reaction the amount of products expected, is more than what is actually produced.
- It can be useful to calculate the efficiency of the formula. (much like % error in a lab).

Percent Yield =
$$\frac{\text{Actual Yield}}{\text{Expected Yield}}$$

Percent Yield Example

• A piece of Copper (5.0-g) is placed in a solution of excess Silver Nitrate. When separated 7.2-g of Silver is produced. What is the Percent Yield?

$$Cu$$
+ $AgNO_3$ \rightarrow Ag + $CuNO_3$
7-9

$$5.0-g' \text{ Cu'} \times \frac{1-mol}{63.5-g'} \times \frac{1 \text{ Ag}}{1 \text{ Cu'}} \times \frac{107.9-g}{1-mol}$$

5.0-g Cu should produce 8.5-g Ag

Percent Yield Example

 So in the reaction the 5.0-g of Copper could have yielded a maximum of 8.5-g of Silver, but the problem stated only 7.2-g was produced.

$$\frac{7.2 - g Ag}{8.5 - g Ag} \times 100 = 84.7\%$$

Note the Percent Yield can never be more than 100%.