### **Got Gas?**

Chemistry
Karl Steffin, © 2006
8/14/2025



#### By end of this unit I can...

GS1: describe the Kinetic-Molecular Theory and explain how it accounts for observed gas behavior.

GS2: identify and describe the variables that define an ideal gas; Pressure, Volume, Moles, Temperature and Ideal Gas Constant.

GS3: calculate pressure using a manometer.

GS4: relate the variables of an ideal gas to changing conditions.

GS5: calculate for an unknown variable using the ideal gas formula for a static condition.

GS6: calculate the composition of a gas using Dalton's law of partial pressures.

### **Basic Properties of Gasses**

- 1 mole of any gas at 0-°C & 1-atm occupy the same volume.
  - 1-mol = 22.4-L at Standard Temp and Pressure
- Can be compressed.
- Expand to fill their container.
- Different gasses may move through each other.
- Constantly travel in random directions.
- Have a high amount of Kinetic Energy.
  - The amount of energy is proportional to the temperature of the gas.

# **Kinetic Theory**

- When contained, gas molecules constantly hit the side of the container and other molecules.
  - The more molecules hit the side of the wall the more the pressure on the wall.
  - These impacts do not reduce the energy of the molecule (elastic collision).

# Variables of gas: Pressure (P)

- Amount of contact with a container's walls.
- Some common conversions:
  - -1-atm = 101.3-kPa (kilo Pascal's)
  - -1-atm = 760 mm Hg (mm of Mercury)
  - $-1-atm = 14.7 lb/in^2 (psi)$
  - -1-atm = 1.013-bar
- Keep in mind:
  - Since all equal 1-atm they all equal each other.
    - 101.3-Kpa = 760-mm Hg

#### **Pressure Problem Example**

- Convert 6.25-atm to mm Hg.
  - 1. Write what you know.
  - 2. What you have: bottom.
  - 3. What you want: top.

$$6.25 - atm x \frac{760 - mm Hg}{1 - atm} = 4750 - mm Hg$$

# **Using a Manometer**

Measures differences in pressure.



## **Manometer Example**

■ A ball is hooked up to a manometer with the open end at sea level. If the height is 25-mm lower on the ball side, what is the balls pressure?

**Draw a picture** 

Ball side height is lower... low side is always larger of the pressures.

To get a larger number add height.

P = 760 - mm Hg + 25 - mm Hg

P = 785.0-mm Hg



# Variables of gas: Volume (V)

- A gas will fill its container
- -1-L = 1000-mL
- $-1-L = .001-m^3$
- $-1-L = 1-dm^3$
- $-1-L = 1000-cm^3$

# Variables of gas: Moles (n)

- Remember the three ways to convert to moles.
  - Mass→ (molar mass-g)
  - Particles→ (Avogadro's Number)
  - Volume → (22.4-L)
    - Remember this is only at a specific temperature (273.15-K) and pressure (1-atm).

# Variables of gas: Temperature (T)

- Fahrenheit based on a salt-water solution.
  - Rankine ≅ Fahrenheit
  - Kelvin ≅ Celsius
- Kelvin should be used.
  - Never Negative.
  - $-T_{\kappa} = T_{\circ c} + 273.15$



# Gas Laws: Boyle

While looking at gasses Boyle found that for any gas the following is true.

**Robert Boyle's Test** 





**Volume** 

### Gas Laws: Boyle

- Doing this experiment multiple times, he found that P=k/V or PV=k.
  - This assumes a constant Temperature.
- For any sample of gas the following is true:  $P_1V_1=k_1$  and  $P_2V_2=k_1$

$$P_1V_1=P_2V_2$$

#### **Gas Laws: Charles**

While looking at gasses it was found that for any gas the following is true.

(1746-1823)

**Jacques Charles' Test** 

 $V = k_2 T$ 

**Temperature** 

#### **Gas Laws: Charles**

- Doing this experiment multiple times, he found that V=k<sub>2</sub>T.
  - This assumes a constant Pressure.
- For any sample of gas the following is true:  $V_1=k_2T_1$  and  $V_2=k_2T_2$

$$V_1/T_1=V_2/T_2$$

# Gas Laws: Gay-Lussac

While looking at gasses it was found that for any gas the following is true.

**Joseph Louis Gay-Lussac's Test** 



**Temperature** 



### Gas Laws: Gay-Lussac

- Doing this experiment multiple times, he found that P=k<sub>3</sub>T.
  - This assumes a constant Volume.
- For any sample of gas the following is true:

$$P_1 = k_3 T_1$$
 and  $P_2 = k_3 T_2$  so...  $P_1/T_1 = P_2/T_2$ 





## Gas Laws: Avagadro

Avagadro already stated that at a constant pressure and temperature the Volume of any gas is proportional to the amount.

$$V_1 = k_4 n_1$$
 and  $V_2 = k_4 n_2$  so...  $V_1/n_1 = V_2/n_2$ 



#### Gas Law's: Combined



**PV=nRT** 

This is called the Ideal Gas Law.

R=.0821-atm'L/mol'K

R=8.314-Pa'm3/mol'K

R: Depends on the Pressure and Volume given (n→moles, T→K always)

If a gas changes condition ("then"):

Before = After
$$\frac{PV}{nT} = \frac{PV}{nT}$$

## Gas Law Example: Combined



At 300-K a balloon at 1.75-atm has a volume of 2-L. The temp drops to 250-K and then has a volume of 2.3-L. What is the new Pressure?

$$\frac{PV}{nT} = \frac{PV}{nT}$$

$$\frac{1.75 - atm \cdot 2 - \mathcal{L}}{300 - \mathcal{K}} = \frac{P \cdot 2.3 - \mathcal{L}}{250 - \mathcal{K}}$$

$$.011667 - atm = .0092 \cdot P$$

$$1.26 - atm = P$$





■ In a tire what volume does 6-moles of N<sub>2</sub> occupy at 1.5-atm and 16°-C?

$$PV = nRT$$

$$1.5 - atm \cdot V = 6 - mol \cdot .0821 \frac{atm \cdot L}{mol \cdot R} \cdot 289.15 - R$$

$$1.5 V = 142.43529 - L$$

$$V = 94.95686 - L$$

```
P = 1.5-atm
V = ?
n = 6-mol
R = .0821-atm·L/mol·K
T = 16 + 273.15 →
T = 289.15-K
```

#### **Gas Law: Dalton**

■ John Dalton spent his time looking at Pressure. Dalton stated gasses with different Pressures....





Put together in the same size container, the total Pressure is the sum the parts.