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Hidden Benefits
E =

® During the first look at kinematics moving In
multiple dimensions at the same time was avoided.

It would be rather boring to only walk back and forth.
)

Airplanes would also be ineffective if they could not
move up and down while traveling. (3D)
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Forces in 2D

® In the last unit it was sometimes necessary to
break down a vector into X and y components.

Forces not parallel or perpendicular.

® This will be the main principle guiding Forces
and Motion in 2D.

Break down the vector into x and y components!
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2D Forces Example

® A sign (168.00-N) is hanging over the road,
suspended by two cables both attached at a 22.50°
angle. What is the tension in one of the ropes?

22.50°

168-N
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2D Forces Example

®The sign is at rest .~ both Fyer, and Fygry = 0.

® Both ropes are at an angle and should be broken
down into individual x and y components.

|:Ta |:Tb

168-N

Fe



2D Forces Example

® Both ropes hold half the Weight (F,=F+,)

Fnery = 01
Fnery = Fray Py + Fe
I:Tay — I:Tby

0-N = 2F,, - 168.00-N
Fray = 84.00-N




2D Forces Example

Sin 8 =

0
E S

84 — N
T Sin225

Frq

Fr, = 219.50 — N
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Motion in 2D: Starting Steps
E =

® Break vectors apart into components.
Treat theses initial motions separately!
O . An object will only change v due to the force
of gravity which Is only in the y direction.
y axis: solve for 4,, and know a = (-)9.8-m/s?.
X axis: solve for u, and know a = 0-m/s? . o, = .
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Motion in 2D: Starting Steps
R =

oDo not mix d, v & & vectors

A ball i1s kicked 20-m and reaches a max height of 5-m.
 This is actually not a very helpful triangle.

A ball is kicked 30° at 30-m/s.
* Must break into components.

No acceleration in x after kick so nothing to break down.

N B
062 - ]
z 5-m 3 15-m/s 9.8-m/s?
30°

20-m 25.98-m/s
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2D Motion Example |
R =

® A stone is thrown horizontally 15.00-m/s off the top
of a 44.00-m cliff.

How far from the base of the cliff does the stone land?
How fast Is it moving it hits the ground?

e While it seems very little information is given, this Is
all that's needed. 15-m/s

|

44-m



2D Motion Example | cont.
B =

A. How far from the base of the cliff does the stone land?
Start: Time to land? (determined by gravity: y axis).

Py = Voy + .5at? p, = -44-m

14 _0_159 m Voy = 0-m/s
—44 —m =0 -4, _S_Zt ay:-9 8-m/s?
t? = 8.97 — s> L=X

t = 2.9965 —s



2D Motion Example | cont.
R

A. How far from the base of the cliff does the stone land?
Since v,, does not change v,, = v. KISS!

on — pTx px =X
gy = 15.00-m/s
I 2 t=2.99-s
15 s 299-—s

p, = 44.95 —m



2D Motion Example | cont.
B =

B. How fast is it moving it hits the ground?
The final velocity of both x and y Iis needed.

v, = 15y + 2ap Voy = O—m//s
= X-MJ/S
2 _ m %
Ve, =0+2--98—-—-—44—-m a, = -9.8-m/s?
S y
P =-44.00-m
2
2 = 862.40 — —
Vry ' G2

m
vy, = 29.3666 — —
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2D Motion Example | cont.
B =

B. How fast Is it moving the Instant before it hits the ground?

Add the vectors. (Pythagorean theory) o = 15.00-m/s
>

2 _ .2 2
14 —vfy+vfx

2 UN U _
vf = (2936 - ) + (15— ) U, = 29.3666-m/s

2

2 m
Uf = 1087.40 — S_Z 24

m
= 32.98 — —
Uf S
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2D Motion Example |l
E =

® A kicker attempts to make a 25-yd (22.86-m) field goal
with a initial kick of 22.00-m/s at 40.00° to the horizontal.
If the goal post is 3.05-m high, is it a good kick?
A good way to set this up is with a T chart for the variables

Picture: Don’t mix v and p variables together. J
QN 13.05-m L

~ P

d 40.00 °

22.86- m‘




2D Motion Example Il cont [sosm E|

o Start: Break down the vector and make a T-Chart for reference.

PO . y
QO U —
P y v=16.85=m/s | v, = 14.14=m/s
& 40 p = 22.86-m p > 3.05-m?
d U, = a =-9.8-m/s?
=
H-cos0 =4 H-sinf =0 Position in the
m m y is not really
U, = 22——-cos 40 Voy = 22 ——"-5sin 40 given, rather it
S S is a number to
m m test for,
v, = 16.8529 — — Voy = 14.1413 — —

S S



2D Motion Example Il cont [s05m 5

_ 22.86-m,

e At what time does it to get (p,) to the post (t) X y
® How high the ball is at that time (p,) ©v=16.85=m/s | v, = 14.14=m/s
] p = 22.86-m p > 3.05-m?
® [s the height more or less than 3.05-m? = a =-9.8-m/s2
=
5 = Ap Py = Vpyt +.5at?
.Y " -
=1414——-136—s+ .5-—-9.8 — — - (1.36 — 5)*
g m_2286-m " s 52
0 s T At p, =19.18 —m —9.02 — m
py =10.17 —m
At = 1.3564 — s

py > height of goal ...yes
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Circular Motion

Newton's 15t Law states that an object tends to
travel in the same direction, so how do things travel
In a circle?

A force must ‘pull’ the object off course.

Thought: If a yo-yo Is swung overhead and the
string gets cut what happens to the yo-yo?

The string (which is held by the hand) keeps it from
going In a straight direction.
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Getting math involved

® Period (T): Time an object takes to go one revolution (s).
Period is inverse of frequency. f = 1/T (Hz).

oy =2mr/T
® a.= +*/ r. (Always towards center)

So when related to forces:
Fnete = Ma, (Also towards the center)

® Combined Expanded
Faere =M w2l r FaeTe = M(4TT2r [ T2)
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Against Conventional Wisdom

® Why then, when driving in a car and going around a
curve, are passengers thrown to the outside of the
car (away from the Fyg1)?

Remember Newton's first law... all passengers will
want to travel in the direction they were moving.

The car door/seatbelt pushes you back into the curve.
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Circular Motion Example

® A 13.00-g rubber stopper Is attached to a .93-m string.
The stopper Is swung overhead, making one revolution
every 1.18-s. What is the tension force by the string on
the stopper?

13-g This picture is an overhead view. 1i9

.93-m Free Body (F ..y is into the screen)
so it does not interact with the F_.




CM Example cont.

. a‘C
® Solve using the expanded F,g formula. %F
. mam’r m = .013-kg
=
T? r=.93-m
o 013 — kg - 4% - .93 —m T=1.18-s
r (1.18 — 5)2
s 4772 —kg-m
T 13924 — 52
Fr =.3427 - N

F, = 3.43x10"1 — N
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Kepler's Laws of Planetary Motion
E =
® Astronomer using the precise

observations and data of Tycho Brahe developed
three laws of planetary motion.

These laws further validated the
sun centered model and led way for
Galileo's laws of gravitation.
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Kepler's Laws of Planetary Motion
B

L. The orbit of every planet | IS an elllpse W|th the Sun
at one of the two focl. ~

2020-04-14 00:00 Qrbital eccentricity ) : T ] ) SR ‘-- -

Eccentricity: 2 4 .6 .8



Kepler's Laws of Planetary Motion

A line joining a planet and the Sun sweeps out
equal areas during equal intervals of time.

A planet will travel faster the closer it is to the sun.

| 1_month
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Kepler's Laws of Planetary Motion

3. The square of the orbital period (T) of a planet is
proportional to the cube of the semi-major axis (R)

of its orbit.
- sz TE2
—C k _— = —
R3 RS2 R

If a planet’s (Earth) data is known, then the formula
becomes solvable. (365.25-days, 1-AU)
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Kepler's Laws of Planetary Motion
R =

® Mercury orbits the sun every 88 earth days. How far is it
from the Sun (in AU)?

Tnzl TE2~ Tm: 88-d
R, R} Rm™
m  SF T.= 365.25-d
(88 —days)® (365.25 — days)? R.= 1.00-AU
R3,  (1-AU)3
N Rm = 3871 — AU

_ 3
R = (133407 AU R, = 3.87x10"1 — AU
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