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Hidden Benefits

⚫During the first look at kinematics moving in 

multiple dimensions at the same time was avoided.

◆It would be rather boring to only walk back and forth. 

(2D)

◆Airplanes would also be ineffective if they could not 

move up and down while traveling. (3D)



Forces in 2D

⚫In the last unit it was sometimes necessary to 

break down a vector into x and y components.

◆Forces not parallel or perpendicular.

⚫This will be the main principle guiding Forces 

and Motion in 2D.

◆Break down the vector into x and y components!



2D Forces Example

⚫A sign (168.00-N) is hanging over the road, 

suspended by two cables both attached at a 22.50°

angle. What is the tension in one of the ropes?

168-N
22.50°



2D Forces Example

⚫The sign is at rest ∴ both FNETy and FNETx = 0.

⚫Both ropes are at an angle and should be broken 

down into individual x and y components.

168-N

FTa FTb

FE



2D Forces Example

⚫Both ropes hold half the Weight (FTa = FTb)

FNETy = 0 -N

FNETy = FTay + FTby + FE

FTay = FTby

0-N = 2FTay - 168.00-N

FTay = 84.00-N

168-N

FTa FTb

FE

FTay FTby
22.5 22.5



2D Forces Example

168-N

FTa

FE

84-N

FTay 22.5

𝑆𝑖𝑛 𝜃 =
𝑂

𝐻
 …  𝑆𝑖𝑛 𝜃 =

𝐹𝑇𝑎𝑦

𝐹𝑇𝑎

𝐹𝑇𝑎 =
84 − 𝑁

𝑆𝑖𝑛 22.5

𝐹𝑇𝑎 = 219.50 − 𝑁



Motion in 2D: Starting Steps

⚫Break vectors apart into components.

◆Treat theses initial motions separately!

⚫KEY: An object will only change v due to the force 

of gravity which is only in the y direction.

◆y axis: solve for vyo and know a = (-)9.8-m/s2.

◆x axis: solve for vxo and know a = 0-m/s2 ∴ vxo = vx.



Motion in 2D: Starting Steps

⚫Do not mix d, v & a vectors

◆A ball is kicked 20-m and reaches a max height of 5-m.

• This is actually not a very helpful triangle.

◆A ball is kicked 30° at 30-m/s.

• Must break into components.

◆No acceleration in x after kick so nothing to break down.

30°

25.98-m/s

15-m/s
9.8-m/s2

20-m

5-m



2D Motion Example I

⚫A stone is thrown horizontally 15.00-m/s off the top 

of a 44.00-m cliff.

A. How far from the base of the cliff does the stone land?

B. How fast is it moving before it hits the ground?

⚫While it seems very little information is given, this is 

all that’s needed.

4
4
-m

15-m/s



2D Motion Example I cont.

A. How far from the base of the cliff does the stone land?

◆Start: Time to land? (determined by gravity: y axis).

py = -44-m

v0y = 0-m/s

ay = -9.8-m/s2

t = x

Time is the only variable that is always the same in both axes!

𝑝𝑦 =  𝑣𝑜𝑦 +  .5𝑎𝑡2

−44 − 𝑚 = 0 − 4.9 −
𝑚

𝑠2
𝑡2

𝑡2 = 8.97 − 𝑠2

𝑡 = 2.9965 − 𝑠

4
4
-m

15-m/s



2D Motion Example I cont.

A. How far from the base of the cliff does the stone land?

◆Since 𝑣𝑜𝑥  does not change 𝑣𝑜𝑥 = ҧ𝑣. KISS!

𝑣𝑜𝑥 =
𝑝𝑥

𝑡
px = x

v0x = 15.00-m/s

t = 2.99-s15 −
𝑚

𝑠
=

𝑝𝑥

2.99 − 𝑠

𝑝𝑥 = 44.95 − 𝑚

4
4
-m

15-m/s



2D Motion Example I cont.

B. How fast is it moving before it hits the ground?

◆The final velocity of both x and y is needed.

v0y = 0-m/s

vfy = x-m/s

ay = -9.8-m/s2

p = -44.00-m

𝑣𝑓𝑦
2 = 𝑣𝑜𝑦

2 + 2𝑎𝑝

𝑣𝑓𝑦
2 = 0 + 2 ∙ −9.8 −

𝑚

𝑠2
∙ −44 − 𝑚

𝑣𝑓𝑦
2 = 862.40 −

𝑚2

𝑠2

𝑣𝑓𝑦 = 29.3666 −
𝑚

𝑠

4
4
-m

15-m/s



2D Motion Example I cont.

vfy = 29.3666-m/s

vfx = 15.00-m/s

B. How fast is it moving the instant before it hits the ground?

◆Add the vectors. (Pythagorean theory)

𝑣𝑓
2 = 𝑣𝑓𝑦

2 + 𝑣𝑓𝑥
2

𝑣𝑓
2 = (29.36 −

𝑚

𝑠
)2 +  (15 −

𝑚

𝑠
)2

𝑣𝑓
2 = 1087.40 −

𝑚2

𝑠2

𝑣𝑓 = 32.98 −
𝑚

𝑠



2D Motion Example II

⚫A kicker attempts to make a 25-yd (22.86-m) field goal 

with a initial kick of 22.00-m/s at 40.00° to the horizontal. 

If the goal post is 3.05-m high, is it a good kick?

◆A good way to set this up is with a T chart for the variables

◆Picture: Don’t mix v and p variables together.

40.00 °

22.86-m

3.05-m



2D Motion Example II cont

⚫ Start: Break down the vector and make a T-Chart for reference.

40°

vy

vx

x

v = 16.85=m/s

p = 22.86-m

t =

y

vo = 14.14=m/s

p > 3.05-m?

a = -9.8-m/s2

t =

𝐻 ∙ 𝑐𝑜𝑠 𝜃 = 𝐴

ҧ𝑣𝑥 = 22 −
𝑚

𝑠
∙ 𝑐𝑜𝑠 40

ҧ𝑣𝑥 = 16.8529 −
𝑚

𝑠

𝐻 ∙ 𝑠𝑖𝑛 𝜃 = 𝑂

𝑣𝑜𝑦 = 22 −
𝑚

𝑠
∙ 𝑠𝑖𝑛 40

𝑣𝑜𝑦 = 14.1413 −
𝑚

𝑠

22.86-m

3.05-m

Position in the 

y is not really 

given, rather it 

is a number to 

test for,



2D Motion Example II cont

⚫ At what time does it to get (px) to the post (t)

⚫ How high the ball is at that time (py)

⚫ Is the height more or less than 3.05-m?

x

v = 16.85=m/s

p = 22.86-m

t =

y

vo = 14.14=m/s

p > 3.05-m?

a = -9.8-m/s2

t =

ҧ𝑣𝑥 =
∆𝑝

∆𝑡

16.85 −
𝑚

𝑠
=

22.86 − 𝑚

∆𝑡

∆𝑡 = 1.3564 − 𝑠

𝑝𝑦 = 𝑣𝑜𝑦𝑡 + .5𝑎𝑡2

𝑝𝑦 = 14.14 −
𝑚

𝑠
∙ 1.36 − 𝑠 + .5 ∙ −9.8 −

𝑚

𝑠2
∙ (1.36 − 𝑠)2

𝑝𝑦 = 19.18 − 𝑚 − 9.02 − 𝑚

𝑝𝑦 = 10.17 − 𝑚

𝑝𝑦 > ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑔𝑜𝑎𝑙 … 𝑦𝑒𝑠

22.86-m

3.05-m



Circular Motion

⚫Newton's 1st Law states that an object tends to 
travel in the same direction, so how do things travel 
in a circle?

◆A force must ‘pull’ the object off course.

⚫Thought: If a yo-yo is swung overhead and the 
string gets cut what happens to the yo-yo?

◆The string (which is held by the hand) keeps it from 
going in a straight direction.



Getting math involved

⚫Period (T): Time an object takes to go one revolution (s). 

◆Period is inverse of frequency. f = 1/T (Hz).

⚫ vc = 2πr / T 

⚫ ac= v2 / r. (Always towards center)

So when related to forces:

FNETc = mac (Also towards the center)

⚫Combined     Expanded

 FNETc = m· vc
2 / r      FNETc = m(4π2r / T2) 



Against Conventional Wisdom

⚫Why then, when driving in a car and going around a 

curve, are passengers thrown to the outside of the 

car (away from the FNET)?

◆Remember Newton’s first law… all passengers will 

want to travel in the direction they were moving.

◆The car door/seatbelt pushes you back into the curve.



Circular Motion Example

⚫A 13.00-g rubber stopper is attached to a .93-m string. 

The stopper is swung overhead, making one revolution 

every 1.18-s. What is the tension force by the string on 

the stopper?

.93-m

13-g
13-g

ac Fc

This picture is an overhead view.

Free Body (Fgravity is into the screen) 

so it does not interact with the Fc.



CM Example cont.

⚫Solve using the expanded FNET formula.

.93-m

13-g

13-g

ac F

m = .013-kg

r = .93-m

T = 1.18-s

𝐹𝑇 =
𝑚4𝜋2𝑟

𝑇2

𝐹𝑇 =
.013 − 𝑘𝑔 ∙ 4𝜋2 ∙ .93 − 𝑚

(1.18 − 𝑠)2

𝐹𝑇 =
.4772 − 𝑘𝑔 ∙ 𝑚

1.3924 − 𝑠2

𝐹𝑇 = .3427 − 𝑁

𝐹𝑇 = 3.43𝑥10−1 − 𝑁



Kepler’s Laws of Planetary Motion

⚫Astronomer Johannes Kepler using the precise 

observations and data of Tycho Brahe developed 

three laws of planetary motion.

◆These laws further validated the 

sun centered model and led way for 

Galileo's laws of gravitation.

1546-16011571-1630



Kepler’s Laws of Planetary Motion

1. The orbit of every planet is an ellipse with the Sun 

at one of the two foci.

Eccentricity:   0       .2       .4       .6       .8



Kepler’s Laws of Planetary Motion

2. A line joining a planet and the Sun sweeps out 

equal areas during equal intervals of time.

◆ A planet will travel faster the closer it is to the sun.

A2

A1

A1= A2



Kepler’s Laws of Planetary Motion

3. The square of the orbital period (T) of a planet is 

proportional to the cube of the semi-major axis (R) 

of its orbit. 

If a planet’s (Earth) data is known, then the formula 

becomes solvable. (365.25-days, 1-AU)

T2

R3 ∝ k

Tp
2

Rp
3

TE
2

RE
3

=



Kepler’s Laws of Planetary Motion

⚫ Mercury orbits the sun every 88 earth days. How far is it 

from the Sun (in AU)?
Tm= 88-d

Rm= 

TE= 365.25-d

RE= 1.00-AU

𝑇𝑚
2

𝑅𝑚
3 =

𝑇𝐸
2

𝑅𝐸
3

(88 − 𝑑𝑎𝑦𝑠)2

𝑅𝑚
3 =

(365.25 − 𝑑𝑎𝑦𝑠)2

(1 − 𝐴𝑈)3

𝑅𝑚 =
3 7744

133407
− 𝐴𝑈3

𝑅𝑚 = .3871 − 𝐴𝑈

𝑅𝑚 = 3.87𝑥10−1 − 𝐴𝑈
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