Solutions/Mixtures

Chemistry
Karl Steffin, 2006
8/14/2025

By end of this unit I can...

SM1: define and describe the key terms of a mixture.

SM2: describe the differences between heterogeneous and

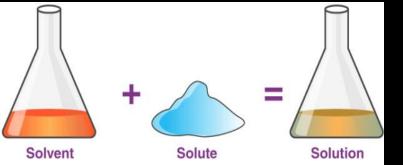
homogeneous mixtures.

SM3: describe the differences between solid, liquid and gaseous

mixtures.

SM4: describe and identify factors that impact the rate of dissolving.

SM5: calculate the molarity of a solution to determine its concentration.


SM6: calculate the molality of a solution to determine its concentration.

SM7: identify and describe the colligative properties of a solution.

SM8: calculate changes in temperature using the colligative properties of a solution.

Mixtures

- Mixtures have a few special terms associated with them.
 - Solution- A homogeneous mixture of two or more substances.
 - Solvent- The part of a mixture that is dissolving.
 - Solute- The part of a mixture that is being dissolved.
 - Unsaturated- No solute in solvent.
 - Saturated- A solution that can not hold any more solute at normal temperature.
 - Supersaturated- A solution that holds more solute than normal conditions allow.
 - Precipitate- A liquid or solid that is not uniformly mixed throughout the solution.
 - Viscosity- Flow of a material. (Water has a very low viscosity)

Other Terms: Colloids

- Suspension: A dispersion of a solid inside a liquid. (murky water)
- Aerosol: Liquid or solid suspended in a gas. (fog, smoke)
- Gel: Mixture of a solid and liquid where the liquid is trapped inside giving a flexible property to the solid. (custard, gelatin, pudding)
- Emulsion: Two liquids that do not mix together. Short lived. (Milk, Vinaigrette, Ice Cream)
- Foam: Gas held within a liquid that has a high surface tension. (colas, soap suds)

Why Won't it Dissolve?

- Previously discussed the idea of the three liquid solvents: Water, Oil, Alcohol.
- Whether something will dissolve is based off the type of bonds:

Solvent	Polar Solute	Non-Polar Solute	Ionic Solute
	(water/alcohol)	(oil)	
Polar	Soluble	Insoluble	Soluble
Non-Polar	Insoluble	Soluble	Insoluble

Solution Types Examples

- Solvent-Solute
 - Gas-Gas: Air
 - Liquid-Gas: Soda
 - Solid-Gas: Pop Rocks, Charcoal Filter
 - Liquid-Liquid: Antifreeze
 - Liquid-Solid: Kool-Aid
 - Solid-Solid: Alloys (White Gold)
 - Solid-Liquid: Dental Fillings (Silver Amalgam)

Molarity

- Molarity (M): A unit of concentration for solutions.
 - Equal to # moles solute (n)/1-L of solvent.
- The higher the \mathfrak{M} , the stronger the solute in the solvent (normally water).
 - -12- \mathcal{M} H₂SO₄ is the strongest concentration you can find, very dangerous. Experiments normally use 1- \mathcal{M} or less.

Molarity Example I

 What is the molarity of a solution formed by mixing 100.0-g of H₂SO₄ with enough water to make 100.0-mL?

$$M = \frac{n}{V}$$
 $100 - g x \frac{1 - mol}{98.1 - g} = 1.019 - mol$ $n = 1.019$ -mol $V = .1$ -L

$$M = \frac{1.019 - \text{mol}}{.1 - \text{L}}$$

M = 10.2 - Molar

Molarity Example II

 How many milliliters of water are needed to make a 4.5-M solution with 52.0-g of table salt?

$$M = \frac{\mathbf{n}}{\mathbf{V}}$$

$$52 - g x \frac{1 - mol}{58.5 - g} = .889 - mol$$

$$M = 4.5$$
-Molar

$$n = .889-mol$$

$$4.5 - \frac{mol}{L} = \frac{.89 - mol}{V}$$

$$V = .1975 - Lx \frac{m}{\frac{1}{1000}}$$

$$V = 197.5 - mL$$

Molality

- Molality (m): A unit of concentration for solutions.
 - Equal to # moles solute (n)/1-kg of solvent.
- This takes a mole to mass ratio instead of mole to volume.
 - Molality is independent of temperature, Molarity is not.

Molality Example

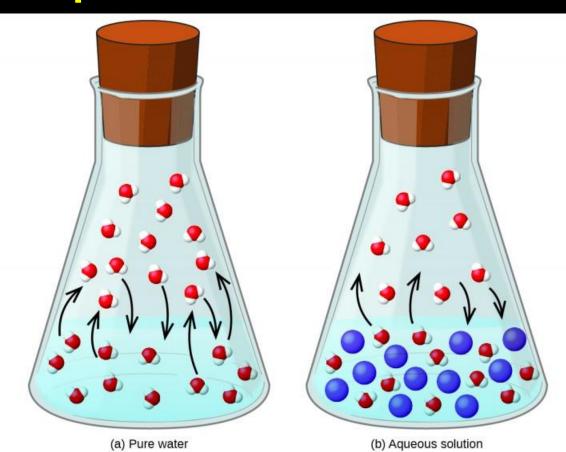
 What is the molality of a solution formed by mixing 750.0-g of Glucose with enough water to make 500-g?

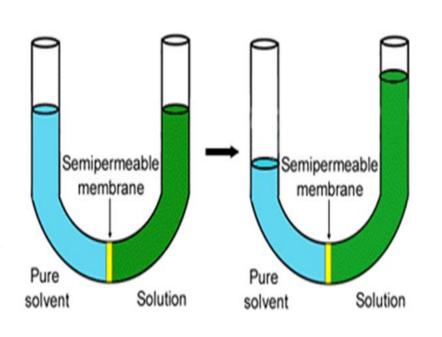
$$m = \frac{4.2 - \text{mol}}{.5 - \text{kg}}$$

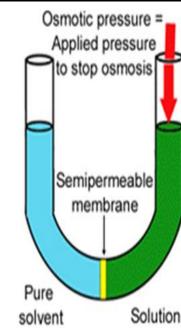
The 13th letter: Curse in Chem

 This unit, like science, uses m often. Keep track of them!

Letter	Туре	Use	Example
m	#	mili (10 ⁻³)	1.0-mg (milligram)
M	#	Mega (10 ⁶)	2.0-Mb (Megabyte)
mol	Unit	moles	3.0-moles
Mol	Unit	Molecules	4.0-Molecules
m	Variable	mass	5.0-kg
m	Variable	molality	6.0-molal
M	Variable	Molarity	7.0-Molar


Colligative Properties


- Some physical properties of solutions will differ from the properties of the pure solvent.
 - Colligative Property: A property of a solvent that is dependant on the concentration.
- Four Properties: Boiling Point Elevation, Freezing Point Depression, Vapor Pressure Reduction, Osmotic Pressure.


Colligative Properties

Vapor Pressure Reduction

Osmotic Pressure

CP: Boiling Point Elevation

- Solutes that are not volatile will raise the boiling point of a liquid.
 - Antifreeze mixes with water to make it harder for the coolant to boil out of the tank.
 - BPE (ΔT_b): The difference between the boiling point of the solution and the boiling point of the pure solvent.
 - This is directly related to molality *m*.

$$\Delta T_b = K_b m$$
 (K_b is a constant for each solvent)

Boiling Point Elevation Table

Solvent	K _b (°C/molal)
Acetic Acid (C ₂ H ₄ O ₂)	2.93
Benzene (C ₆ H ₆)	2.67
Carbon Tetrachloride (CCI ₄)	5.02
Chloroform (CHCl ₃)	3.85
Ethanol (C ₂ H ₆ O)	1.20
Water	0.52

- This is not on the lon Chart.
- This change adds to the boiling point.
 - Water: 100.0-°C (373.15-K)

BPE Example

• What is the increase in boiling point when 100.0-g of sucrose ($C_{12}H_{22}O_{11}$) is added to 500-g of water?

$$100 - g x \frac{1 - mol}{342 - g} = .29 - mol$$

$$m = \frac{n}{m}$$

$$m = \frac{.29 - mol}{.5 - kg}$$

$$\Delta T_b = K_b m$$

$$\Delta T_b = K_b m$$

$$\Delta T_b = .58 - molal$$

$$\Delta T_b = .304 - °C$$

$$m = .58 - molal$$

$$m = .29 - mol$$

 $\Delta T_{\rm b} = 3.0 \text{ x } 10^{-1} - {}^{\circ}\text{C}$

m = .58 - molal

CP: Freezing Point Depression

- Much like the BPE, when a solute is added to a solvent, it can lower the temperature at which a pure solvent freezes.
 - This is why salt is used on Ice.
- The freezing point is also based on molals.

$$\Delta T_f = K_f m$$
 (K_f is also a constant)

Freezing Point Depression Table

Solvent	K _f (°C/molal)
Acetic Acid (C ₂ H ₄ O ₂)	3.90
Benzene (C ₆ H ₆)	5.12
Naphthalene (C ₁₀ H ₈)	7.00
Chloroform (CHCl ₃)	4.68
Camphor (C ₁₀ H ₁₆ O)	40.0
Water	1.86

- This is not on the lon Chart.
- This subtracts from the freezing point.
 - Water: 0.0-°C (273.15-K)

FPD Example

 At what temperature will water freeze at (in K) if 3.6molal of antifreeze is added to water?

$$\Delta \mathbf{T_f} = \mathbf{K_f} \boldsymbol{m}$$

$$\Delta T_{\rm f} = 1.86 - \frac{^{\circ}\text{C}}{\text{molal}} \times 3.6 - \text{molal}$$

$$\Delta T_f = 6.7 - ^{\circ}C \text{ (also 6.7 - K)}$$

$$T = 273.15 - K - 6.7 - K$$

$$T = 266.5 - K$$

$$\Delta T_f =$$

$$K_f = 1.86 - {^{\circ}C}/m$$

$$m = 3.6-m$$