Applying Newton's Laws

Auburn Mountainview Karl Steffin, 2006 8/5/2024

Quick or Slow

- Until now problems had continual forces which produced continual acceleration.
- What about in sports where a soccer ball is kicked, a baseball thrown or a volleyball hit?

 In these cases a brief contact is made which only allows for a brief acceleration (and force).

Impulse [v]

 Impulse is the application of a force during a set amount of time.

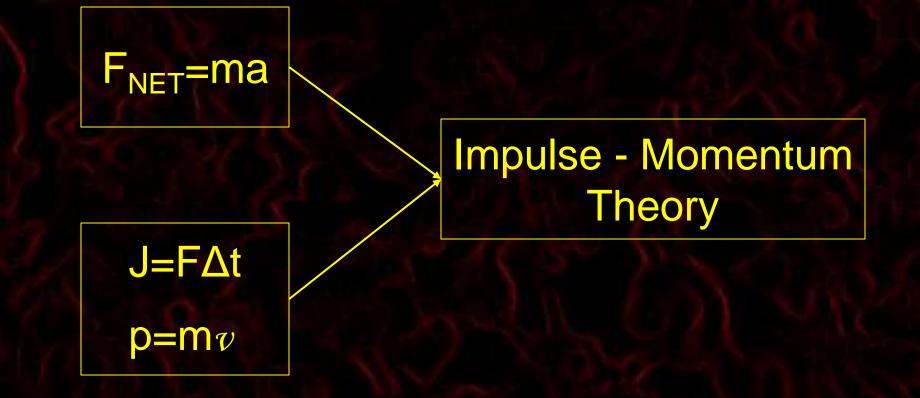
Impulse = Force x Time (N-s)

 $J = F\Delta t$

What Does This Mean?

- A large impulse produces a large response and vice versa.
- It is normally thought that a large kick/hit will allow a ball to travel quickly.
 - What if a cannon ball is hit with a bat?
- From Newton's first law Inertia showed the importance of mass in the ability to move an object.

Momentum [v]


 Momentum is a way to show the relationship of mass and velocity to eachother.

p = mv

Momentum = mass x velocity (SI: kg·m/s) $\Delta p = \Delta m v$ $\Delta p = m v_f - m v_o \qquad \text{or} \qquad \Delta p = m_f v - m_o v$

Bringing it Together

• From F_{NET} = ma, Impulse, and Momentum:

Impulse-Momentum Theory

F = ma

 $a = \frac{(v_f - v_o)}{\Lambda t}$ $\mathsf{F} = \frac{\mathsf{m}(v_{\mathsf{f}} - v_{\mathsf{o}})}{\Delta \mathsf{t}}$ $F\Delta t = m(v_f - v_o)$ $J = \Delta p$ Impulse = Change in Momentum

I-M Theory I

While teeing off Jordan Spieth drives the ball (45-g) from rest to 38-m/s in just 3-ms.
m/s is not ms! One is velocity the other time (m=10⁻³).
A. What is the change in momentum of the ball?
B. What impulse is applied on the ball?
C. What force is applied to the ball?

I-M Theory I cont

A. What is the change in momentum of the ball? Another solving method: Set up a table.

p=mv	Initial (o)	Final (f)
m (kg)	.045	.045
v (m/s)	0	38

 $\Delta p = mv_f - mv_o$ $\Delta p = .045 - kg \cdot 38 \frac{m}{s} - .045 - kg \cdot 0 \frac{m}{s}$

$$\Delta p = 1.71 - kg\frac{m}{s}$$

I-M Theory I cont

B. What impulse is applied on the ball?We will use the 'formula' but really the only concern is changing the unit.

 $J = \Delta p$ $J = 1.71 - kg \frac{m}{s}$

J = x $\Delta p = 1.71 \text{-kg-m/s}$

I-M Theory I cont

C. What force is applied to the ball?

 $J = F \Delta t$ $1.71 - kg \frac{m}{s} = F \cdot .003 - s$

J = 1.71-N-S F = x t = 3.00×10^{-3} -s

I-M Theory II

A baseball (m=149-g) approaches a bat horizontally at a speed of 42-m/s and is hit straight back with a speed of 45-m/s. If the ball is in contact of the bat for a time of 1.10-ms, what is the average force exerted on the ball by the bat?

c/o 2013 #22 J. Cassano vs. PHS GSHR (5/12/13)

I-M Theory II cont

Start by finding the change in momentum...

p=mv	Initial	Final
m (kg)	.149	.149
v (m/s)	-42.00	45.00

 $\Delta \boldsymbol{p} = \boldsymbol{m}\boldsymbol{v}_{\boldsymbol{f}} - \boldsymbol{m}\boldsymbol{v}_{\boldsymbol{o}}$

 $\Delta p = .149 - kg \cdot 45 - \frac{m}{s} - .149 - kg \cdot -42 - \frac{m}{s}$

I-M Theory II cont

To find the Force use the I-M theory.

 $J = \Delta p$ $J = F\Delta t$ $\Delta p = F\Delta t$ $12.96 - Ns = F \cdot .0011 - s$ 11784 - N = F $\Delta p = 12.96$ -kg·m/s F = x t = 1.10 x 10⁻³-s

Conservation of Momentum

 In a closed system (no outside forces) it is assumed that there will be no change in momentum. **Conservation of Linear Momentum** $\Sigma p_o = \Sigma p_f$ $m_1 v_{o1} + m_2 v_{o2} = m_1 v_{f1} + m_2 v_{f2}$ (Elastic) $m_1 v_{o1} + m_2 v_{o2} = (m_1 + m_2) v_f$ (Inelastic)

Con Mom Example I

To make a 7-10 split a bowler must hit a pin at just the right angle. The ball (5.50-kg) traveling at 7.60-m/s hits the pin (1.55-kg). The ball continues traveling at 6.50-m/s. What is the speed of the pin (assume no energy is lost)?
Since no Energy is lost this will be an elastic collision.

Con Mom Example I cont

p=mv	Ball	Pin
m (kg)	5.50	1.55
v _o (m/s)	7.60	0.00
v _f (m/s)	6.50	X

5.5 - kg · 7.6 - $\frac{m}{s}$ + 0 - kg $\frac{m}{s}$ = 5.5 - kg · 6.5 - $\frac{m}{s}$ + 1.55 - kg · v_f

41.8 - kg - $\frac{m}{s}$ = 35.75 - kg - $\frac{m}{s}$ + 1.55 - kg · v_f

 $p_o = p_f$

Con Mom Example II

- A 2270.00-kg car going 28.00-m/s rear ends a 875.00-kg car going 16.00-m/s and their bumpers lock. What is the speed of the wreckage as soon as they lock up (assume no friction or loss of momentum) ?
 - Since the bumpers lock this will be an inelastic collision and since the final velocities must be same the final equation can be:

$$m_1 v_{o1} + m_2 v_{o2} = (m_1 + m_2) v_f$$

Con Mom Example II cont

p=mv	Car 1	Car 2	Wreckage
m (kg)	2270	875	3145
v (m/s)	$v_{\rm o} = 28.0$	$v_{0} = 16.0$	\mathcal{V}_{f}

 $m_{1}v_{o1} + m_{2}v_{o2} = (m_{1} + m_{2})v_{f}$ $2270 - kg \cdot 28 - \frac{m}{s} + 875 - kg \cdot 16\frac{m}{s} = 3145 - kg \cdot v_{f}$ $63560 - \frac{m}{s} + 14000 - \frac{m}{s} = 3145 \cdot v_{f}$

Con Mom Example III

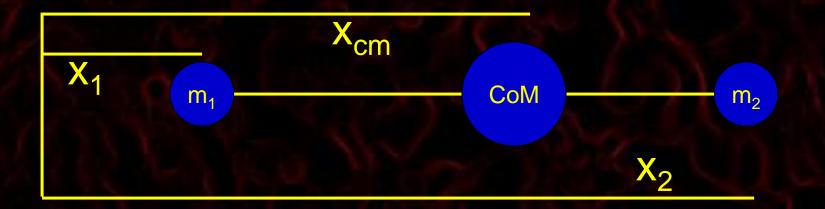
 At rest in space, Mike Massimino fires a thruster gun that expels 35.00-g of gas at 875.00-m/s. Assuming the mass of the astronaut and gun is 84.00-kg what is the recoil velocity of the astronaut?

Con Mom Example III cont

p=mv	Initial	Gas	Astronaut+Gun
m (kg)	84.04	.0350	84.0
v (m/s)	$v_{\rm o} = 0$	$v_{\rm fg} = 875$	V _{fa}

 $0 = m_1 v_{f1} + m_2 v_{f2}$ $0 = .035 - kg \cdot 875 - \frac{m}{s} + 84 - kg \cdot v_f$ $84 \cdot v_f = -30.625 - \frac{m}{s}$

Center of Mass


- Physics measures the masses of both large and small objects.
- For simplicity's sake when looking at an objects mass, it can be thought of as if it were at a singular point.
- Thinking of the mass of an object as a single point does not influence the mathematical outcome.
 - Another way to think about it: I can replace a group of objects with one object.
 - The one object must have a mass equal to all the others and placed somewhere between where the group of objects were.

Center of Mass

 Center of Mass (cm): To consider two (or more) objects as one:

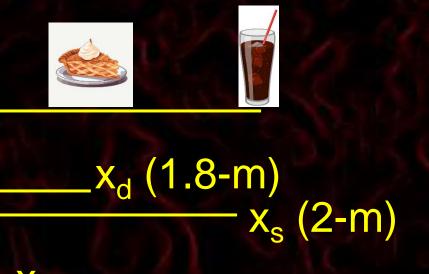
$$\mathbf{x}_{cm} = \frac{\mathbf{m}_1 \mathbf{x}_1 + \mathbf{m}_2 \mathbf{x}_2 + \mathbf{m}_n \mathbf{x}_n}{\mathbf{\Sigma}\mathbf{m}}$$

• The CoM will be closer to the more massive object.

CoM Example

A server brings dinner on a 1-m tray: Fish and chips (850-g) sits on the far edge, dessert (400-g) sits on the other edge and the drink (350-g) sits .2 meters from the soda.
What is the force needed to carry the tray? Where does the

server place their hand to keep it balanced?


CoM Example cont.

- The force needed is nothing more than adding all the items together.
 - F = (.85+.35+.4) kg * 9.8 m/s2
 - F = 15.68 N
- For the balancing point:

Ref.	F&C	Dessert	Soda
m (kg)	.85	.35	.4
d (m)	1	1.8	2

CoM Example cont.

Ref.	F&C	Dessert	Soda
m (kg)	.85	.35	.4
d (m)	1	1.8	2

Reference Point

 $cm = \frac{m_{fc}x_{fc} + m_dx_d + m_sx_s}{m_{fc} + m_d + m_s}$

x_{fc} (1-m)

CoM Example cont.

.85-kg-1-m + .35-kg-1.8-m + .4-kg-2-m

 $CoM = \frac{(.85 + .35 + .4) - kg}{1.6 - kg}$

CoM = 1.425-m Remember to take away the reference distance (1-m). CoM = .425-m or 4.25×10^{-1} -m from the left side.

CoM =

The server can put all three items .43-m from the left edge and feel the same (force/balance).

