Waves

Auburn Mountainview Karl Steffin, 2008 8/7/2024

Waves and Energy

Waves...

Are traveling disturbances.
Carry energy from place to place.

There are three types of waves:

-Transverse (Mechanical)

– Longitudinal/Surface (Mechanical)

Complex Transverse (Electro-magnetic)

Transverse Wave

A wave that vibrates perpendicular to the direction of travel.

A wave pulse: One disturbance that travels through a medium

- Continuous waves: A series of wave pulses.

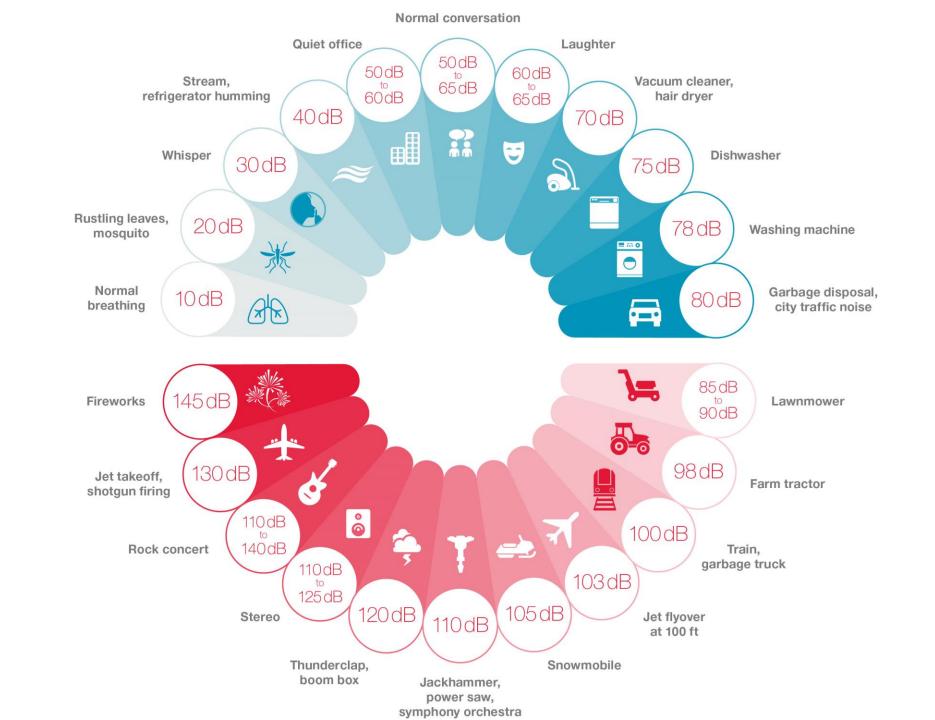
Trans. Wave Defined:

- Crest: Highest point of a wave's displacement.
- Trough: Lowest point of a wave's displacement.
- Amplitude (A): The maximum displacement from center to either crest or trough.
- Wavelength (λ): The length of one full wave.
- Frequency (f): The number of waves that pass through a point in one second. (cycles/second or Hertz Hz)
- Period (T) : The time it takes for one part of a wave to return to the same point. (T=f⁻¹ or T=1/f)
- Velocity: Speed that a wave travels ($v=f\lambda$)

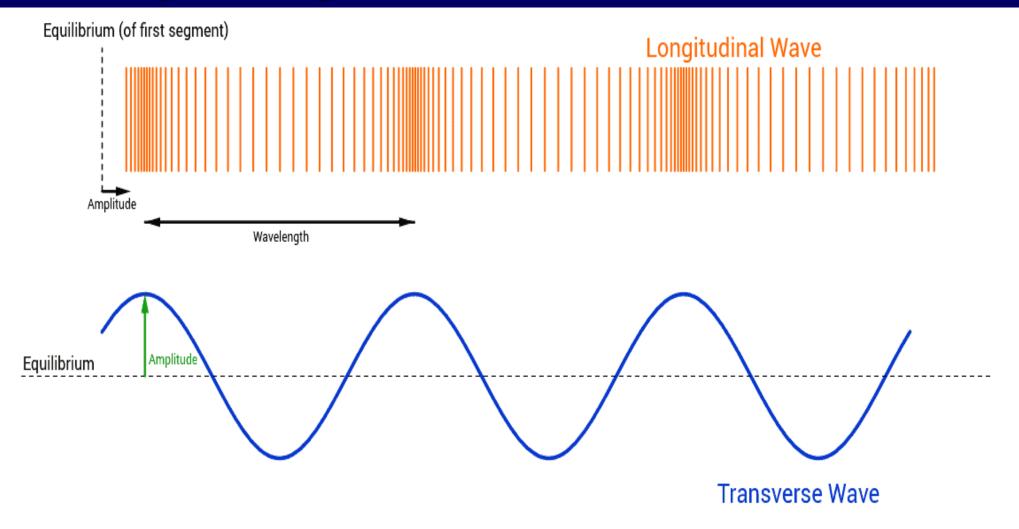
Longitudinal

Also called a compression wave.
Energy travels with the direction of motion. (Sound).

	-		\vdash	\vdash	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	÷
++	+	-			_			_																	_	t
\rightarrow																										L
																										L
																										Γ
																										Γ
					_	_												_		_						ľ
++																										t
++	+	-	Н	\square																						t
++	+	-	\vdash																						-	t
++	+	-	H	\vdash			-		\vdash	\vdash				\vdash		\vdash	\vdash			-		\vdash			-	t
++	+	-	\vdash	-	-	-	-	-					-				-	-	-	-				-	-	ŧ
++	+	-	\vdash		-	-	-	_					-					-	-	-				-	_	ł
++	_	-	\square																							Ļ
\rightarrow	\rightarrow																									Ļ
	_	_																		_						L
																										L
																										L
																										Г
++																										t
++																										t
++	+	-	\vdash		-	-	-	-					-					-	-	-					-	t
++	+	-	\vdash		-	-	-	-					-		-	-	-	-	-	-				-	-	ŧ
++	+	-			-	-	-	-					-		-	-	-	-	-	-				-	-	ł
++	+	-																							_	⊦
\rightarrow		1																								L

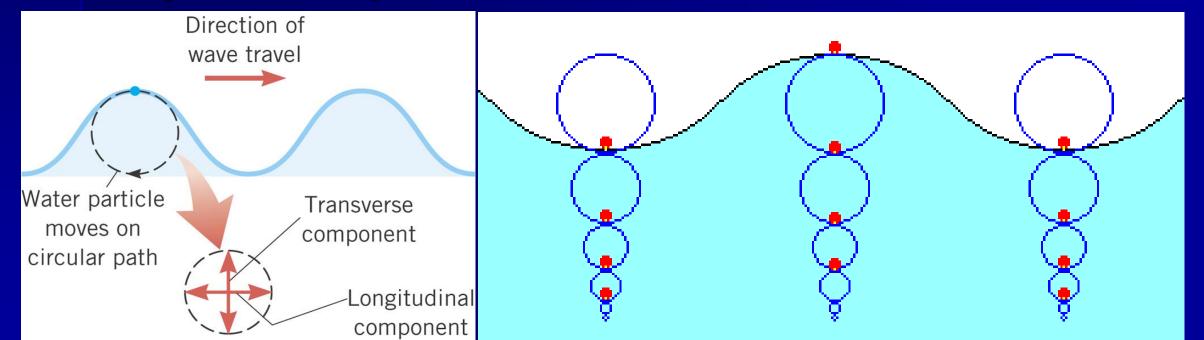

					\bigcirc			
$\bullet \bullet \bullet \bullet$		\bigcirc	$\bullet \bullet \bullet \bullet$			$\bullet \bullet \bullet \bullet$	0	
			$\bullet \bullet \bullet$					
$\bullet \bullet \bullet \bullet \bullet$	•	•				$\bullet \bullet \bullet \bullet$		
	•		$\bullet \bullet \bullet$	• (
$\bullet \bullet \bullet \bullet \bullet$	•	•				$\bullet \bullet \bullet \bullet$		\bigcirc
			$\bullet \bullet \bullet$					
		•	$\bullet \bullet \bullet \bullet$		•			
	•			•			•	
$\bullet \bullet \bullet \bullet$	•	•			•		~	
	•	•						
$\bullet \bullet \bullet \bullet \bullet$		•	$\bullet \bullet \bullet \bullet$				•	•
$\bullet \bullet \bullet \bullet$			$\bullet \bullet \bullet \bullet$					
$\bullet \bullet \bullet \bullet \bullet$	0	•	$\bullet \bullet \bullet \bullet$	•	•			

Anatomy of a Long. Wave


 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $\bullet \bullet \bullet \bullet \bullet$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \mathbf{O} \mathbf{O} \bigcirc \bigcirc $\bullet \bullet \bullet \bullet$ \bigcirc \bigcirc \bigcirc \bigcirc $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Wavelength (λ) Rarefaction Compression/ Condensation

Long. Wave Defined:

- Compression/Condensation: Area of increased particle density.
- Rarefaction: Area of decreased particle density.
- For Sound:
 - -Velocity: 343-m/s at 293.15-K (20-°C)
 - Frequency (f): Pitch (The audible range for people: 20 Hz-20kHz)
 - -Amplitude (A): How loud sound is (~dB).



Comparing TW vs LW

Mechanical: Surface

Type of wave with properties of both transverse and longitudinal. The path of a particle is circular.

Example 1

A tuning fork produces a sound wave that has a frequency of 262.00-Hz and a wavelength of 1.29-m.
 A. What is the speed of the wave?
 B. How long will it take the wave to travel the length of a football field (91.40-m)?

C. What is the period of the wave?

Example 1 Cont.

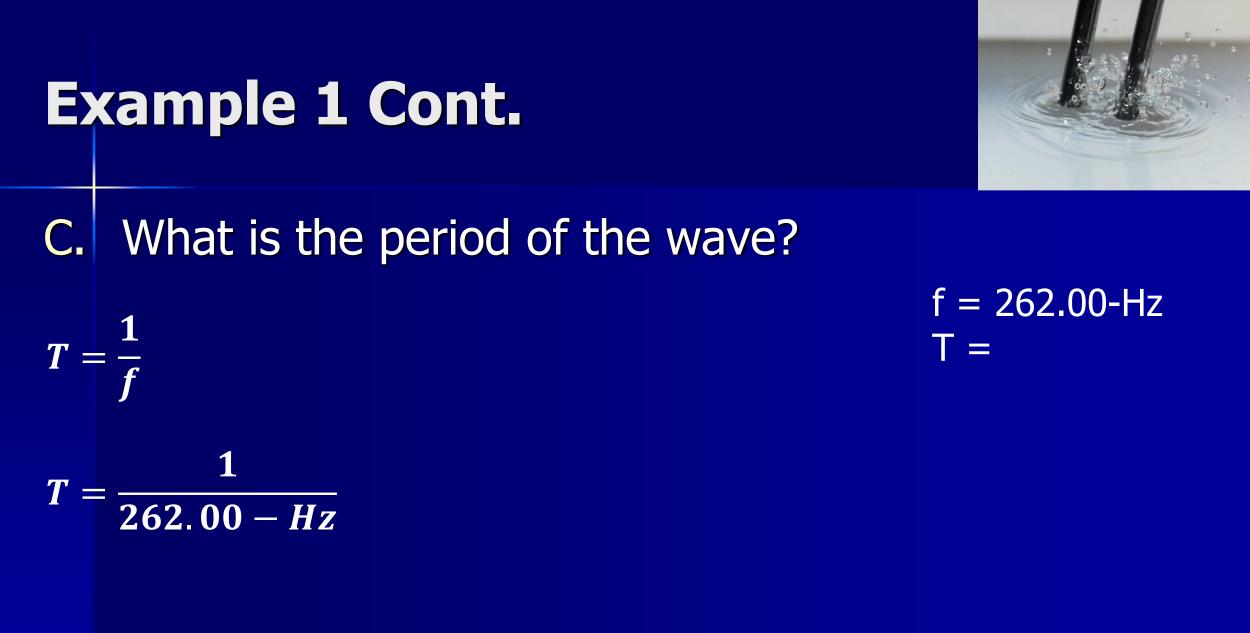
A. What is the speed of the wave?

 $v = f\lambda$

 $v = 262 - Hz \cdot 1.29 - m$

v = f = 262.00 - Hz $\lambda = 1.29 - m$

Example 1 Cont.

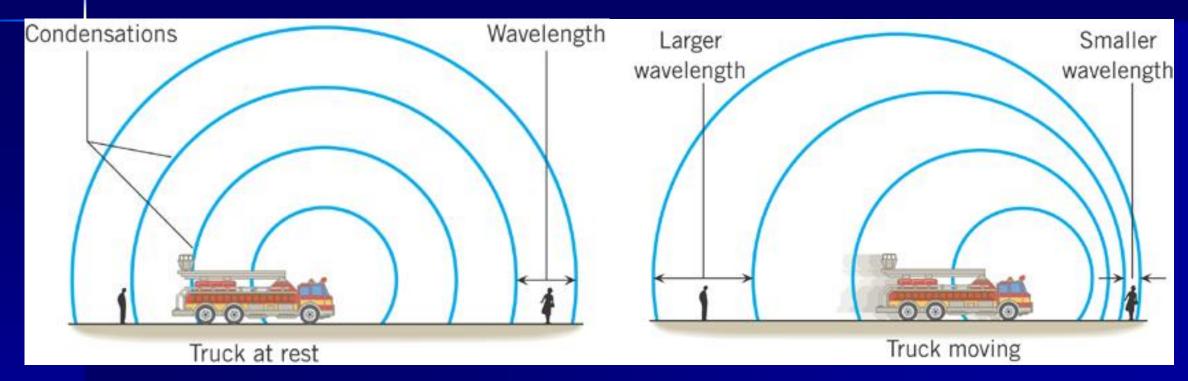

B. How long will it take the wave to travel the length of a football field (91.40-m)?

 $\boldsymbol{v} = \frac{\Delta \boldsymbol{p}}{\Delta \boldsymbol{t}}$

$$338-\frac{m}{s}=\frac{91.4-m}{\Delta t}$$

v = 338.00-m/s p = 91.40-m t =

$$\Delta t = 2.70 x 10^{-1} - s$$

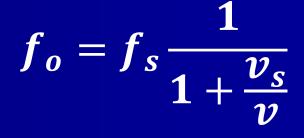


The Doppler Effect

When a moving object emits sound the compression waves can pile up or spread apart (depending on the movement).

- This piling/spreading creates a change in frequency called the Doppler effect
 - This is why sirens sound higher when approaching and lower once they pass.

The Doppler Effect Visual



From the front the sound's frequency is higher, from behind it is lower.

The Doppler Effect

To measure the change of frequency:

$$f_o = f_s \frac{1}{1 - \frac{v_s}{v}}$$

Sound moving toward observer

Sound moving away from observer

 $f_o =$ Frequency observed $f_s =$ Frequency of source $v_s =$ velocity of source v = speed of sound

Example 2

The Shinkansen, traveling 44.70-m/s, sounds a warning siren (f=415.00-Hz). What is the perceived frequency of the siren for a person standing at the crossing as the train is both going towards and away from the crossing?

Example 2: Moving Towards (-)

$$f_{o} = 415 - Hz \frac{1}{1 - \frac{44.70 - \frac{m}{s}}{343 - \frac{m}{s}}}$$

$$f_{o} = \frac{415 - Hz}{1 - .1303}$$

$$f_{o} = \frac{415 - Hz}{.8696}$$

 $f_o =$ v = 343.00-m/s $f_s = 415.00$ Hz $v_s = 44.70$ -m/s

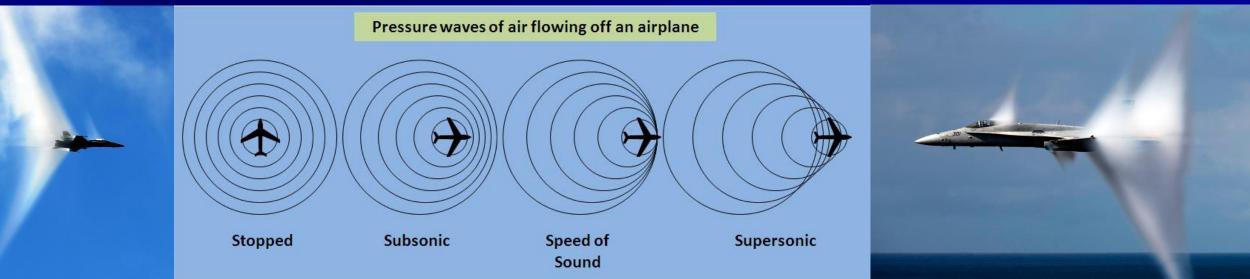
Example 2: Moving Away (+)

$$f_{o} = 415 - Hz \frac{1}{1 + \frac{44.70 - \frac{m}{s}}{343 - \frac{m}{s}}}$$

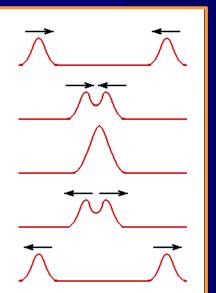
$$\begin{array}{r}
 4 \\
 1 + - \\
 415 - Hz \\
 \overline{1+.1303}
 \end{array}$$

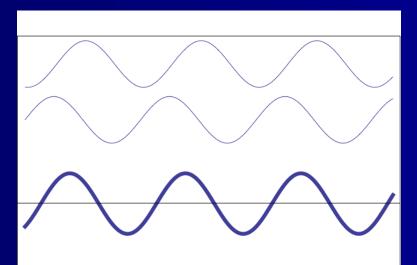
$$f_o = \frac{415 - Hz}{1.1303}$$

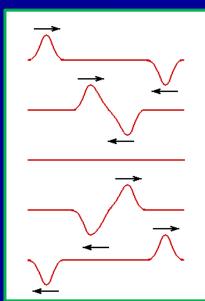
 f_o


 $f_o =$ v = 343.00 - m/s $f_s = 415.00 \text{ Hz}$ $v_{\rm s} = 44.70 - {\rm m/s}$

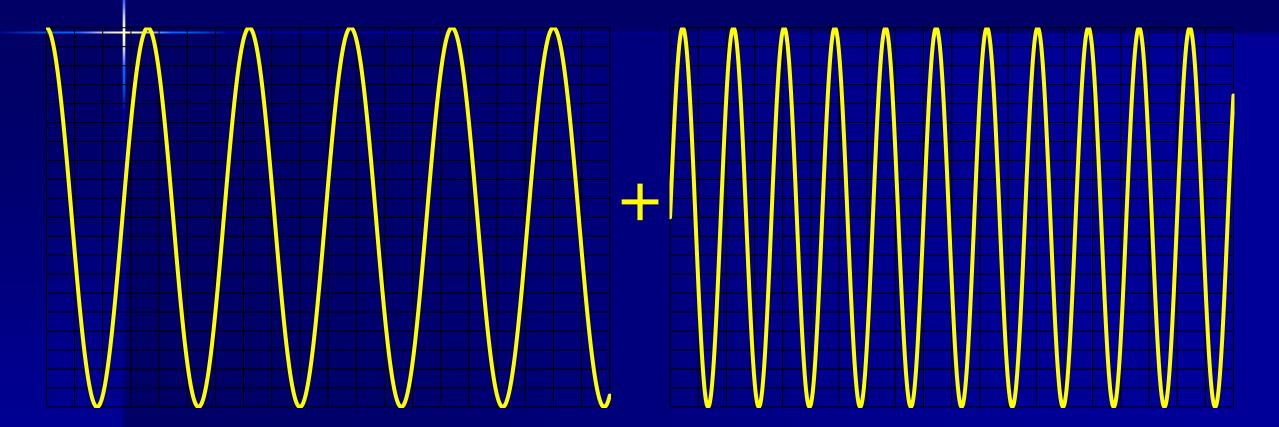
A Final Thought on Sound

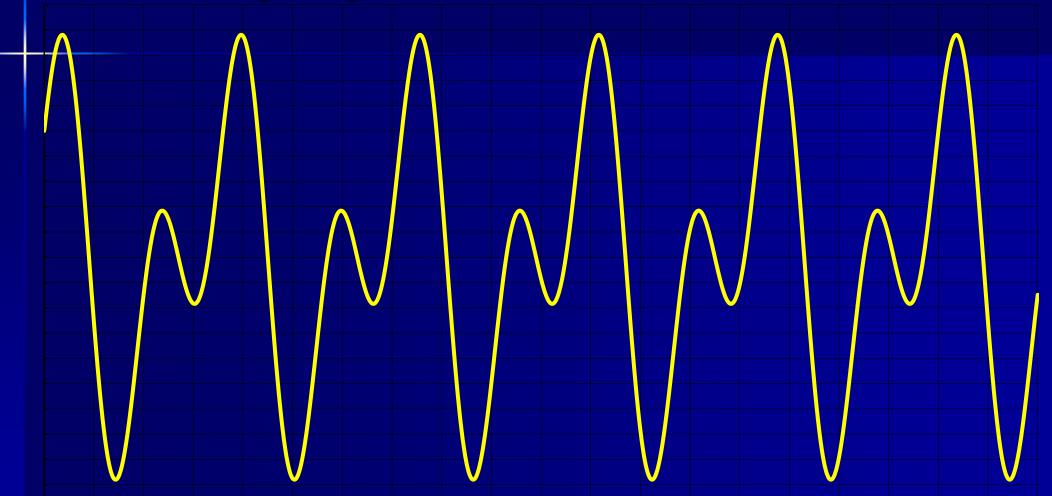

When an object travels the compression waves in front bunch up.
 Since the maximum speed these waves can travel is 343-m/s eventually as a plane passes this speed, the collective waves form one singular shock wave.


This is a sonic boom and can normally be upwards of 200-dB.



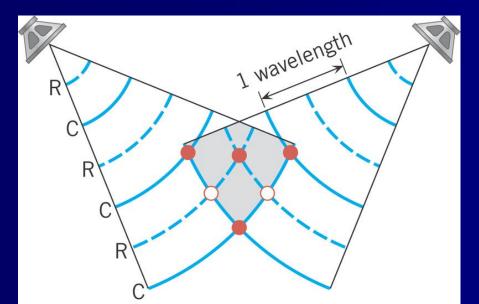
Wave Behaviors: Superposition

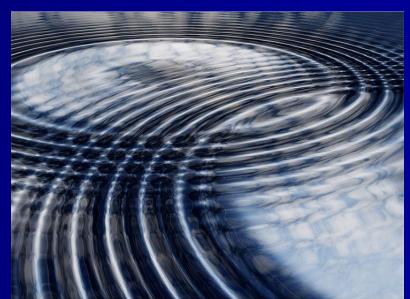

waves passing through each other combine.
 Constructive interference: Maxima of two waves meet in phase.
 Destructive interference: Maxima of two waves meet 180° out of phase.



Waves: Superposition Visual

Wave 1 (left) added to wave 2 (right) will form:

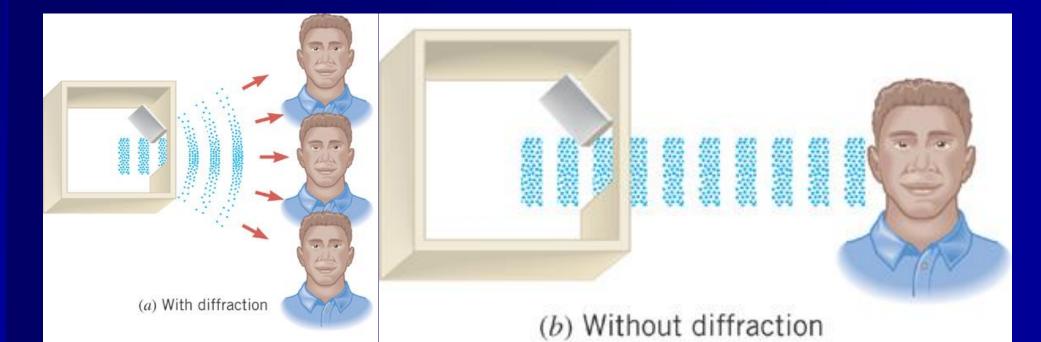

Waves: Superposition Visual



This works for sound waves too. If a sound is captured and inverted an exact opposite wave can be created and the sound will be canceled: Noise reducing/canceling headphones.

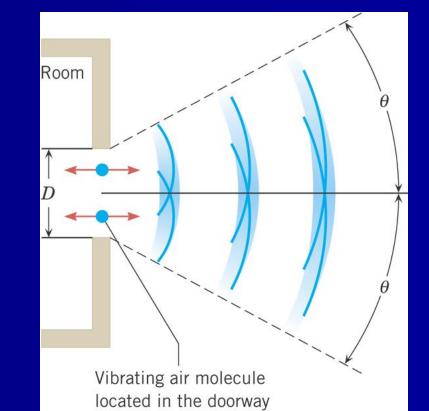
Waves Behaviors : Interference

- Sound wave interference may lead to loud and quiet areas.
 - Depending on the frequency (high), these points are normally smaller than the size of a human eardrum.



Wave Behaviors: Diffraction

When a wave passes through a small opening it will spread out.


The bending around the edges is called diffraction.

Wave Behaviors: Diffraction

The sound is most intense in a straight line out the opening.
 Moving away from this smaller intensities (m) will also appear.

 $D \bullet \sin \theta_{m} = m\lambda$ D = Distance of slit/opening $\theta = (Degrees)$ m = integer (1, 2, 3...) $\lambda = wavelength$

Example 3

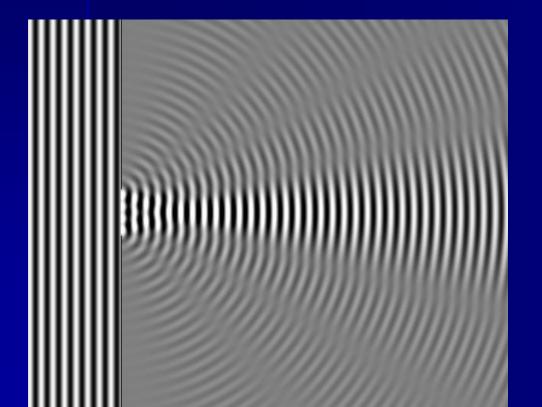
When a laser passes through a 6.00-nm opening the second brightest spot appears 9.00-cm away from the center of the wall. What is the lasers wavelength if the opening is .50-m from the wall.

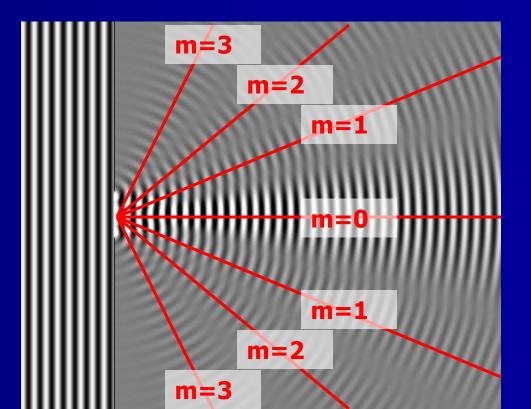
$$\theta = tan^{-1} \frac{9x10^{-1}}{.5}$$

$$\theta = 10.2040^{\circ}$$

$$D = 6x10^{-9}-m$$
$$\Theta = 10.2040^{\circ}$$
$$m = 1$$
$$\lambda =$$

Dsin $\theta = m\lambda$


 $6x10^{-9}m \cdot sin10 = 1 \cdot \lambda$


$$\lambda = 1.06 x 10^{-9} - m$$

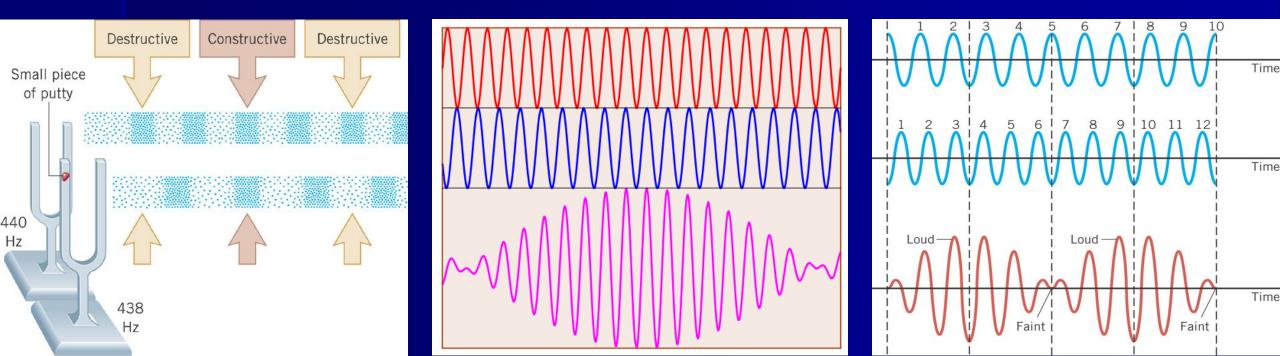
Wave Behaviors: Diffraction

Physicist Thomas Young presented these findings in 1803 to the Royal Society, UK.

Speed versus Amplitude

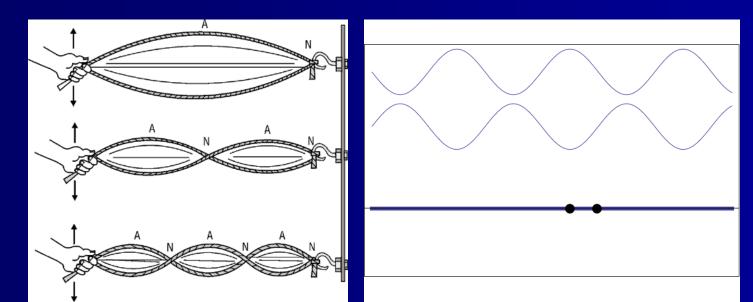
The speed of a wave is determined by the medium that the wave travels through.

 Higher Density → Higher Speed

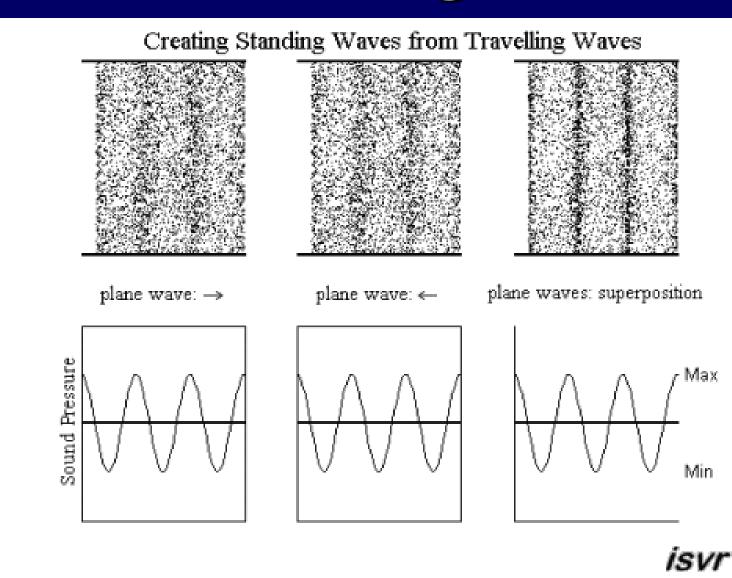

 The Amplitude of the wave is determined by how the wave was generated.

 More Energy → More Amplitude

Waves Hitting Barriers/Interfaces


Wave Behaviors: Beats

Two similar frequencies will create a beat frequency. - Beats: Pulse of the waves interference. $(f_B = |f_1 - f_2|$

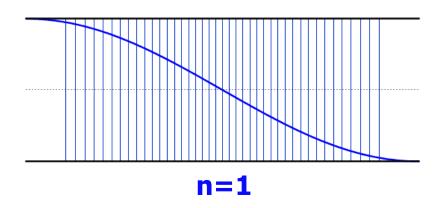


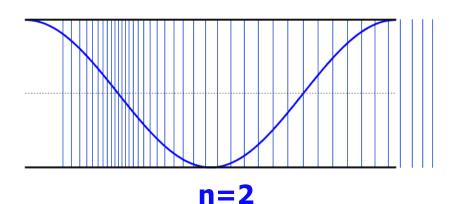
Wave Behavior: Standing Waves

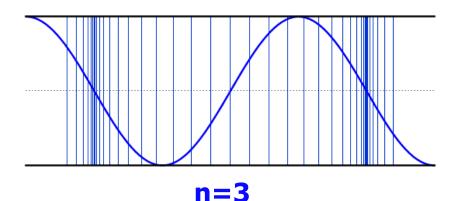
- Standing wave: Two waves traveling towards each other in phase.
 - Node: Area of no displacement.
 - Antinode: Area of maximum displacement

Wave Behaviors: Longitudinal

Longitudinal: Standing Waves Tubes

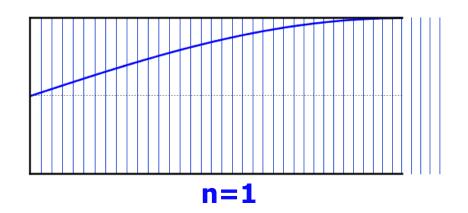

In music the woodwind family depends on standing waves setting up in a tube:
 Both ends open: Flute, Recorder, Organ
 One end open: Clarinet, Saxophone

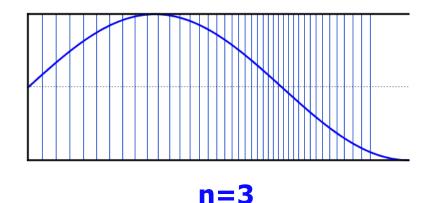


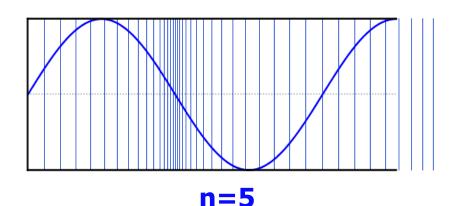

Open Tubes

 Antinodes are set up at the ends.
 To find the frequency of the sound: *f_n* = *n* ^v/_{2L}

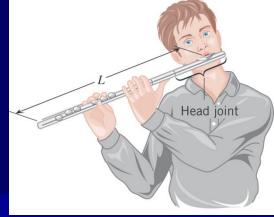
 L= Length
 nth (harmonic) = all positive integers






Closed Tubes

Antinode is set up at one end.
 To find the frequency of the sound:
 f_n = n ^v/_{4L}


L= Length
nth (harmonic) = all odd integers.
There are no even harmonics.

Example 4

Find the length of the flute above if the fundamental (first) harmonic frequency is 261.6-Hz.

 $f_{n} = n \frac{v}{2L}$ $261.6 - Hz = 1 \frac{343 - \frac{m}{s}}{2L}$ $L = \frac{343 - m}{523.2}$

 $f_1 = 261.6-Hz$ n = 1 v = 343-m/sI = 1

 $L = 6.55 \times 10^{-1}$ -m